Browse > Article
http://dx.doi.org/10.4014/jmb.2111.11047

Effects of Engineered Saccharomyces cerevisiae Fermenting Cellobiose through Low-Energy-Consuming Phosphorolytic Pathway in Simultaneous Saccharification and Fermentation  

Choi, Hyo-Jin (Department of Bioenergy Science and Technology, and Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University)
Jin, Yong-Su (Department of Food Science and Human Nutrition, and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign)
Lee, Won-Heong (Department of Bioenergy Science and Technology, and Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University)
Publication Information
Journal of Microbiology and Biotechnology / v.32, no.1, 2022 , pp. 117-125 More about this Journal
Abstract
Until recently, four types of cellobiose-fermenting Saccharomyces cerevisiae strains have been developed by introduction of a cellobiose metabolic pathway based on either intracellular β-glucosidase (GH1-1) or cellobiose phosphorylase (CBP), along with either an energy-consuming active cellodextrin transporter (CDT-1) or a non-energy-consuming passive cellodextrin facilitator (CDT-2). In this study, the ethanol production performance of two cellobiose-fermenting S. cerevisiae strains expressing mutant CDT-2 (N306I) with GH1-1 or CBP were compared with two cellobiose-fermenting S. cerevisiae strains expressing mutant CDT-1 (F213L) with GH1-1 or CBP in the simultaneous saccharification and fermentation (SSF) of cellulose under various conditions. It was found that, regardless of the SSF conditions, the phosphorolytic cellobiose-fermenting S. cerevisiae expressing mutant CDT-2 with CBP showed the best ethanol production among the four strains. In addition, during SSF contaminated by lactic acid bacteria, the phosphorolytic cellobiose-fermenting S. cerevisiae expressing mutant CDT-2 with CBP showed the highest ethanol production and the lowest lactate formation compared with those of other strains, such as the hydrolytic cellobiose-fermenting S. cerevisiae expressing mutant CDT-1 with GH1-1, and the glucose-fermenting S. cerevisiae with extracellular β-glucosidase. These results suggest that the cellobiose-fermenting yeast strain exhibiting low energy consumption can enhance the efficiency of the SSF of cellulosic biomass.
Keywords
Cellulosic ethanol; simultaneous saccharification and fermentation; mutant cellodextrin facilitator; cellobiose phosphorylase; engineered Saccharomyces cerevisiae;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Verce M, De Vuyst L, Weckx S. 2020. Comparative genomics of Lactobacillus fermentum suggests a free-living lifestyle of this lactic acid bacterial species. Food. Microbiol. 89: 103448.   DOI
2 Tewari YB, Goldberg RN. 1989. Thermodynamics of hydrolysis of disaccharides: cellobiose, gentiobiose, isomaltose, and maltose. J. Biol. Chem. 264: 3966-3971.   DOI
3 Hosaka K, Nikawa JI, Kodaki T, Yamashita S. 1992. A dominant mutation that alters the regulation of INO1 expression in Saccharomyces cerevisiae. J. Biochem. 111: 352-358.   DOI
4 Galazka JM, Tian C, Beeson WT, Martinez B, Glass NL, Cate JH. 2010. Cellodextrin transport in yeast for improved biofuel production. Science 330: 84-86.   DOI
5 Brexo RP, Sant'Ana AS. 2017. Impact and significance of microbial contamination during fermentation for bioethanol production. Renew. Sust. Energ. Rev. 73: 423-434.   DOI
6 Lucena BT, dos Santos BM, Moreira JL, Moreira APB, Nunes AC, Azevedo V, et al. 2010. Diversity of lactic acid bacteria of the bioethanol process. BMC Microbiol. 10: 298.   DOI
7 Piper PW. 2011. Resistance of yeasts to weak organic acid food preservatives. Adv. Appl. Microbiol. 77: 97-113.   DOI
8 Kim SR, Ha SJ, Wei N, Oh EJ, Jin YS. 2012. Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol. Trends Biotechnol. 30: 274-282.   DOI
9 Gancedo JM. 1998. Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev. 62: 334-361.   DOI
10 Jin YS, Cate JH. 2017. Metabolic engineering of yeast for lignocellulosic biofuel production. Curr. Opin. Chem. Biol. 41: 99-106.   DOI
11 Ha SJ, Galazka JM, Oh EJ, Kordic V, Kim H, Jin YS, et al. 2013. Energetic benefits and rapid cellobiose fermentation by Saccharomyces cerevisiae expressing cellobiose phosphorylase and mutant cellodextrin transporters. Metab. Eng. 15: 134-143.   DOI
12 Bischoff KM, Liu S, Leathers TD, Worthington RE, Rich JO. 2009. Modeling bacterial contamination of fuel ethanol fermentation. Biotechnol. Bioeng. 103: 117-122.   DOI
13 Ucar RA, Perez-Diaz IM, Dean LL. 2020. Gentiobiose and cellobiose content in fresh and fermenting cucumbers and utilization of such disaccharides by lactic acid bacteria in fermented cucumber juice medium. Food Sci. Nutr. 8: 5798-5810.   DOI
14 Kim H, Oh EJ, Lane ST, Lee WH, Cate JH, Jin YS. 2018. Enhanced cellobiose fermentation by engineered Saccharomyces cerevisiae expressing a mutant cellodextrin facilitator and cellobiose phosphorylase. J. Biotechnol. 275: 53-59.   DOI
15 Oh EJ, Kwak S, Kim H, Jin YS. 2017. Transporter engineering for cellobiose fermentation under lower pH conditions by engineered Saccharomyces cerevisiae. Bioresour. Technol. 245: 1469-1475.   DOI
16 Beckner M, Ivey ML, Phister TG. 2011. Microbial contamination of fuel ethanol fermentations. Lett. Appl. Microbiol. 53: 387-394.   DOI
17 Ha SJ, Galazka JM, Kim SR, Choi JH, Yang X, Seo JH, et al. 2011. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc. Natl. Acad. Sci. USA 108: 504-509.   DOI
18 Liu M, Bischoff KM, Gill JJ, Mire-Criscione MD, Berry JD, Young R, et al. 2015. Bacteriophage application restores ethanol fermentation characteristics disrupted by Lactobacillus fermentum. Biotechnol. Biofuels 8: 132.   DOI
19 Lahtinen S, Ouwehand AC, Salminen S, von Wright A. 2011. Lactic acid bacteria: microbiological and functional aspects. Crc Press.
20 Lee WH, Jin YS. 2017. Evaluation of ethanol production activity by engineered Saccharomyces cerevisiae fermenting cellobiose through the phosphorolytic pathway in simultaneous saccharification and fermentation of cellulose. J. Microbiol. Biotechnol. 27: 1649-1656.   DOI
21 Khatibi PA, Roach DR, Donovan DM, Hughes SR, Bischoff KM. 2014. Saccharomyces cerevisiae expressing bacteriophage endolysins reduce Lactobacillus contamination during fermentation. Biotechnol. Biofuels 7: 104.   DOI
22 Parisutham V, Chandran SP, Mukhopadhyay A, Lee SK, Keasling JD. 2017. Intracellular cellobiose metabolism and its applications in lignocellulose-based biorefineries. Bioresour. Technol. 239: 496-506.   DOI
23 Kim JS, Daum MA, Jin YS, Miller MJ. 2018. Yeast derived LysA2 can control bacterial contamination in ethanol fermentation. Viruses 10: 281.   DOI
24 Liu CG, Xiao Y, Xia XX, Zhao XQ, Peng L, Srinophakun P, et al. 2019. Cellulosic ethanol production: progress, challenges and strategies for solutions. Biotechnol. Adv. 37: 491-504.   DOI
25 Subtil T, Boles E. 2012. Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae. Biotechnol. Biofuels. 5: 14.   DOI
26 Ha SJ, Wei Q, Kim SR, Galazka JM, Cate J, Jin YS. 2011. Cofermentation of cellobiose and galactose by an engineered Saccharomyces cerevisiae strain. Appl. Environ. Microbiol. 77: 5822-5825.   DOI
27 Lee WH, Jin YS. 2017. Improved ethanol production by engineered Saccharomyces cerevisiae expressing a mutated cellobiose transporter during simultaneous saccharification and fermentation. J. Biotechnol. 245: 1-8.   DOI
28 Lee WH, Nan H, Kim HJ, Jin YS. 2013. Simultaneous saccharification and fermentation by engineered Saccharomyces cerevisiae without supplementing extracellular β-glucosidase. J. Biotechnol. 167: 316-322.   DOI
29 Roach DR, Khatibi PA, Bischoff KM, Hughes SR, Donovan DM. 2013. Bacteriophage-encoded lytic enzymes control growth of contaminating Lactobacillus found in fuel ethanol fermentations. Biotechnol. Biofuels 6: 20.   DOI
30 Kim H, Lee WH, Galazka JM, Cate JH, Jin YS. 2014. Analysis of cellodextrin transporters from Neurospora crassa in Saccharomyces cerevisiae for cellobiose fermentation. Appl. Microbiol. Biotechnol. 98: 1087-1094.   DOI
31 Alexander JK. 1961. Characteristics of cellobiose phosphorylase. J. Bacteriol. 81: 903-910.   DOI