• 제목/요약/키워드: cell-cycle arrest

검색결과 710건 처리시간 0.023초

Induction of G1 arrest and apoptosis mediated by a novel nucleoside analog, LJ-331 in human leukemia HL-60 cells

  • Lee, Eun-Jin;Shin, Dea-Hong;Jeong, Lak-Shin;Lee, Sang-Kook
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2003년도 Annual Meeting of KSAP : International Symposium on Pharmaceutical and Biomedical Sciences on Obesity
    • /
    • pp.86-86
    • /
    • 2003
  • In a continuous effort to develop novel anticancer agents we newly synthesized and evaluated the antitumor activity of nucleoside analogues. One analogue, 4 - [2-Chlor-6- (3-iodo- benzy lamino) -purin -9-yl]- 2,3-dihydroxy-cyclopentanecarbo xylic acid methylamide (LJ-331), has been shown to exert a potent inhibition of human cancer cell growth in vitro including human lung (A549), stomach (SNU-638) and leukemia (HL-60) cancer cells. Following mechanism of action study revealed that LJ - 331induces cell cycle arrest at the G1 phase in HL-60 cells and evokes apoptotic phenomena such as an increase in DNA ladder intensity and chromatin condensation by a dose- and time-dependent manner. LJ-331 also activated the caspase-3 activity in HL-60. This result suggests that the growth inhibition of human cancer cells by LJ-331 might be related to the cell cycle arrest and induction of apoptosis.

  • PDF

G1 CELL CYCLE ARREST OF KG-1, A HUMAN ACUTE LEUKEMIA CELLS, BY 8-HYDROXYDEOXYGUANOSINE OCCURS THROUGH BLOCKADE OF THE EXTRACELLULAR SIGNAL REGULATED KINASE PATHWAY

  • Hyun, Jin-Won;Yoon, Sun-Hee;Yoon, Byung-Hak;Chung, Myung-Hee
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2002년도 Molecular and Cellular Response to Toxic Substances
    • /
    • pp.138-138
    • /
    • 2002
  • 8-hydroxydeoxyguanosine (oh8dG) potently inhibits proliferation of KG-1, a human leukemia cell line in vitro, but little is known regarding to molecular mechanisms mediating this effect. Here we demonstrate that treatment of KG-1, deficient in 8-oxoguanine glycosylase (OGG1) activity, with oh8dG lead to G1 arrest associated with a dramatic decrease in the levels of cyclin D3 and cyclin-dependent kinase 4 (cdk4) and accompanied by an increase in the expression of p21.(omitted)

  • PDF

Effect of Sesamin on Apoptosis and Cell Cycle Arrest in Human Breast Cancer MCF-7 Cells

  • Siao, An-Ci;Hou, Chien-Wei;Kao, Yung-Hsi;Jeng, Kee-Ching
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권9호
    • /
    • pp.3779-3783
    • /
    • 2015
  • Dietary prevention has been known to reduce breast cancer risk. Sesamin is one of the major components in sesame seeds and has been widely studied and proven to have anti-proliferation and anti-angiogenic effects on cancer cells. In this study, the influence of sesamin was tested in the human breast cancer MCF-7 cell line for cell viability (MTT assay) and cell cycling (flow cytometry). Results showed that sesamin dose-dependently (1, 10 and $50{\mu}M$) reduced the cell viability and increased LDH release and apoptosis (TUNEL assay). In addition, there was a significant increase of sub-G1 phase arrest in the cell cycle after sesamin treatment. Furthermore, sesamin increased the expression of apoptotic markers of Bax, caspase-3, and cell cycle control proteins, p53 and checkpoint kinase 2. Taken together, these results suggested that sesamin might be used as a dietary supplement f or prevention of breast cancer by modulating apoptotic signal pathways and inhibiting tumor cell growth.

PLGA-Loaded Gold-Nanoparticles Precipitated with Quercetin Downregulate HDAC-Akt Activities Controlling Proliferation and Activate p53-ROS Crosstalk to Induce Apoptosis in Hepatocarcinoma Cells

  • Bishayee, Kausik;Khuda-Bukhsh, Anisur Rahman;Huh, Sung-Oh
    • Molecules and Cells
    • /
    • 제38권6호
    • /
    • pp.518-527
    • /
    • 2015
  • Controlled release of medications remains the most convenient way to deliver drugs. In this study, we precipitated gold nanoparticles with quercetin. We loaded gold-quercetin into poly(DL-lactide-co-glycolide) nanoparticles (NQ) and tested the biological activity of NQ on HepG2 hepatocarcinoma cells to acquire the sustained release property. We determined by circular dichroism spectroscopy that NQ effectively caused conformational changes in DNA and modulated different proteins related to epigenetic modifications and c ell cycle control. The mitochondrial membrane potential (MMP), reactive oxygen species (ROS), cell cycle, apoptosis, DNA damage, and caspase 3 activity were analyzed by flow cytometry, and the expression profiles of different anti- and pro-apoptotic as well as epigenetic signals were studied by immunoblotting. A cytotoxicity assay indicated that NQ preferentially killed cancer cells, compared to normal cells. NQ interacted with HepG2 cell DNA and reduced histone deacetylases to control cell proliferation and arrest the cell cycle at the sub-G stage. Activities of cell cycle-related proteins, such as $p21^{WAF}$, cdk1, and pAkt, were modulated. NQ induced apoptosis in HepG2 cells by activating p53-ROS crosstalk and induces epigenetic modifications leading to inhibited proliferation and cell cycle arrest.

A5E promotes Cell growth Arrest and Apoptosis in Non Small Cell Lung Cancer

  • Bak, Ye Sol;Ham, Sun Young;O, Baatartsogt;Jung, Seung Hyun;Choi, Kang Duk;Han, Tae Young;Han, Il Young;Yoon, Do-Young
    • Journal of Applied Biological Chemistry
    • /
    • 제57권2호
    • /
    • pp.113-122
    • /
    • 2014
  • A5E is complex of several medicinal herb ethanol extracts. The aim of this study is investigating the anticancer effect for non-small cell lung cancer. The antitumor effects of A5E on NCI-H460 were examined by regulation of cell proliferation, apoptosis, cell cycle arrest, mitochondrial membrane potential (${\Delta}{\Psi}_m$), and apoptosis-related protein. Cell proliferation was measured by MTS assay. Apoptosis induced by A5E was confirmed by Annexin V-fluorescein isothiocyanate (FITC)/Propidium Iodide (PI) staining, and cell cycle arrest was measured by PI staining. NF-${\kappa}B$ translocation was detected by immunofluorescence and MMP (${\Delta}{\Psi}_m$) was measured by JC-1 staining. The expression of extrinsic pathway molecules such as FasL and FADD were elevated, and procaspase-8 was processed by A5E. In addition, intrinsic pathway related molecules were altered. The Bcl-2 and Bcl-xl levels decreased, Bax increased, and cytochrome C was released. In addition, the mitochondrial membrane potential collapsed, and caspase-3 and poly-(ADP-ribose) polymerase were processed by A5E. Moreover, A5E affected the cellular survival pathway involving phosphatidylinositol 3-kinase (PI3K)/Akt and NF-${\kappa}B$. PI3K and Akt were downregulated, also NF-${\kappa}B$ expression was decreased, and nuclear translocalization was inhibited by A5E. These results suggested that A5E delays proliferation, inhibit cell cycle progression and induce apoptosis in human lung cancer cell. We conclude that A5E is a potential anticancer agent for human lung carcinoma.

Gamma-Irradiation and Doxorubicin Treatment of Normal Human Cells Cause Cell Cycle Arrest Via Different Pathways

  • Lee, Seong Min;Youn, BuHyun;Kim, Cha Soon;Kim, Chong Soon;Kang, ChulHee;Kim, Joon
    • Molecules and Cells
    • /
    • 제20권3호
    • /
    • pp.331-338
    • /
    • 2005
  • Ionizing radiation and doxorubicin both produce oxidative damage and double-strand breaks in DNA. Double-strand breaks and oxidative damage are highly toxic and cause cell cycle arrest, provoking DNA repair and apoptosis in cancer cell lines. To investigate the response of normal human cells to agents causing oxidative damage, we monitored alterations in gene expression in F65 normal human fibroblasts. Treatment with ${\gamma}$-irradiation and doxorubicin altered the expression of 23 and 68 known genes, respectively, with no genes in common. Both agents altered the expression of genes involved in cell cycle arrest, and arrested the treated cells in $G_2M$ phase 12 h after treatment. 24 h after ${\gamma}$-irradiation, the percentage of $G_1$ cells increased, whereas after doxorubicin treatment the percentage of $G_2M$ cells remained constant for 24 h. Our results suggest that F65 cells respond differently to ${\gamma}$-irradiation- and doxorubicin-induced DNA damage, probably using entirely different biochemical pathways.

Synthetic Homoisoflavane Derivatives of Cremastranone Suppress Growth of Colorectal Cancer Cells through Cell Cycle Arrest and Induction of Apoptosis

  • Shin, Ha-Eun;Lee, Seul;Choi, Yeram;Park, Sangkyu;Kwon, Sangil;Choi, Jun-Kyu;Seo, Seung-Yong;Lee, Younghee
    • Biomolecules & Therapeutics
    • /
    • 제30권6호
    • /
    • pp.576-584
    • /
    • 2022
  • Colorectal cancer is diagnosed as the third most prevalent cancer; thus, effective therapeutic agents are urgently required. In this study, we synthesized six homoisoflavane derivatives of cremastranone and investigated their cytotoxic effects on the human colorectal cancer cell lines HCT116 and LoVo. We further examined the related mechanisms of action using two of the potent compounds, SH-19027 and SHA-035. They substantially reduced the cell viability and proliferation in a dose-dependent manner. Treatment with SH-19027 and SHA-035 induced cell cycle arrest at the G2/M phase and increased expression of p21 both of which are implicated in cell cycle control. In addition, the apoptotic cell population and apoptosis-associated marker expression were accordingly increased. These results suggest that the synthesized cremastranone derivatives have anticancer effects through the suppression of cell proliferation and induction of apoptosis. Therefore, the synthesized cremastranone derivatives could be applied as novel therapeutic agents against colorectal cancer.

Kanakugiol, a Compound Isolated from Lindera erythrocarpa, Promotes Cell Death by Inducing Mitotic Catastrophe after Cell Cycle Arrest

  • Lee, Jintak;Chun, Hyun-Woo;Pham, Thu-Huyen;Yoon, Jae-Hwan;Lee, Jiyon;Choi, Myoung-Kwon;Ryu, Hyung-Won;Oh, Sei-Ryang;Oh, Jaewook;Yoon, Do-Young
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권2호
    • /
    • pp.279-286
    • /
    • 2020
  • A novel compound named 'kanakugiol' was recently isolated from Lindera erythrocarpa and showed free radical-scavenging and antifungal activities. However, the details of the anti-cancer effect of kanakugiol on breast cancer cells remain unclear. We investigated the effect of kanakugiol on the growth of MCF-7 human breast cancer cells. Kanakugiol affected cell cycle progression, and decreased cell viability in MCF-7 cells in a dose-dependent manner. It also enhanced PARP cleavage (50 kDa), whereas DNA laddering was not induced. FACS analysis with annexin V-FITC/PI staining showed necrosis induction in kanakugiol-treated cells. Caspase-9 cleavage was also induced. Expression of death receptors was not altered. However, Bcl-2 expression was suppressed, and mitochondrial membrane potential collapsed, indicating limited apoptosis induction by kanakugiol. Immunofluorescence analysis using α-tubulin staining revealed mitotic exit without cytokinesis (4N cells with two nuclei) due to kanakugiol treatment, suggesting that mitotic catastrophe may have been induced via microtubule destabilization. Furthermore, cell cycle analysis results also indicated mitotic catastrophe after cell cycle arrest in MCF-7 cells due to kanakugiol treatment. These findings suggest that kanakugiol inhibits cell proliferation and promotes cell death by inducing mitotic catastrophe after cell cycle arrest. Thus, kanakugiol shows potential for use as a drug in the treatment of human breast cancer.

Anti-Cancer Effect of IN-2001 in T47D Human Breast Cancer

  • Joung, Ki-Eun;Min, Kyung-Nan;Kim, Dae-Kee;Sheen, Yhun-Yhong
    • Biomolecules & Therapeutics
    • /
    • 제20권1호
    • /
    • pp.81-88
    • /
    • 2012
  • Histone deacetylases (HDACs) are enzymes involved in the remodelling of chromatin, and have a key role in the epigenetic regulation of gene expression. Histone deacetylase (HDAC) inhibitors are emerging as an exciting new class of potential anti-cancer agents. In recent years, a number of structurally diverse HDAC inhibitors have been identifi ed and these HDAC inhibitors induce growth arrest, differentiation and/or apoptosis of cancer cells in vitro and in vivo. However, the underlying molecular mechanisms remain unclear. This study aimed at investigating the anti-tumor activity of various HDAC inhibitors, IN-2001, using T47D human breast cancer cells. Moreover, the possible mechanism by which HDAC inhibitors exhibit anti-tumor activity was also explored. In estrogen receptor positive T47D cells, IN-2001, HDAC inhibitor showed anti-proliferative effects in dose-and time-dependent manner. In T47D human breast cancer cells showed anti-tumor activity of IN-2001 and the growth inhibitory effects of IN-2001 were related to the cell cycle arrest and induction of apoptosis. Flow cytometry studies revealed that IN-2001 showed accumulation of cells at $G_2$/M phase. At the same time, IN-2001 treatment time-dependently increased sub-$G_1$ population, representing apoptotic cells. IN-2001-mediated cell cycle arrest was associated with induction of cdk inhibitor expression. In T47D cells, IN-2001 as well as other HDAC inhibitors treatment significantly increased $p21^{WAF1}$ and $p27^{KIP1}$ expression. In addition, thymidylate synthase, an essential enzyme for DNA replication and repair, was down-regulated by IN-2001 and other HDAC inhibitors in the T47D human breast cancer cells. In summary, IN-2001 with a higher potency than other HDAC inhibitors induced growth inhibition, cell cycle arrest, and eventual apoptosis in human breast cancer possibly through modulation of cell cycle and apoptosis regulatory proteins, such as cdk inhibitors, cyclins, and thymidylate synthase.

Podophyllotoxin Induces ROS-Mediated Apoptosis and Cell Cycle Arrest in Human Colorectal Cancer Cells via p38 MAPK Signaling

  • Lee, Seung-On;Joo, Sang Hoon;Kwak, Ah-Won;Lee, Mee-Hyun;Seo, Ji-Hye;Cho, Seung-Sik;Yoon, Goo;Chae, Jung-Il;Shim, Jung-Hyun
    • Biomolecules & Therapeutics
    • /
    • 제29권6호
    • /
    • pp.658-666
    • /
    • 2021
  • Podophyllotoxin (PT), a lignan compound from the roots and rhizomes of Podophyllum peltatum, has diverse pharmacological activities including anticancer effect in several types of cancer. The molecular mechanism of the anticancer effects of PT on colorectal cancer cells has not been reported yet. In this study, we sought to evaluate the anticancer effect of PT on human colorectal cancer HCT116 cells and identify the detailed molecular mechanism. PT inhibited the growth of cells and colony formation in a concentration-dependent manner and induced apoptosis as determined by the annexin V/7-aminoactinomycin D double staining assay. PT-induced apoptosis was accompanied by cell cycle arrest in the G2/M phase and an increase in the generation of reactive oxygen species (ROS). The effects of PT on the induction of ROS and apoptosis were prevented by pretreatment with N-acetyl-L-cysteine (NAC), indicating that an increase in ROS generation mediates the apoptosis of HCT116 cells induced by PT. Furthermore, Western blot analysis showed that PT upregulated the level of phospho (p)-p38 mitogen-activated protein kinase (MAPK). The treatment of SB203580, a p38 inhibitor, strongly prevented the apoptosis induced by PT, suggesting that PT-induced apoptosis involved the p38 MAPK signaling pathway. In addition, PT induced the loss of mitochondrial membrane potential and multi-caspase activation. The results suggested that PT induced cell cycle arrest in the G2/M phase and apoptosis through the p38 MAPK signaling pathway by upregulating ROS in HCT116 cells.