• Title/Summary/Keyword: cell-cycle arrest

Search Result 710, Processing Time 0.034 seconds

Involvement of G1 arrest and caspase-3 activation in apoptosis induced by bovine lactoferricin

  • Yoo, Yung-Choon;Lee, Kyung-Bok
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.325.2-325.2
    • /
    • 2002
  • We investigated the effect of bovine lactoferricin (Lfcin-B) on cell cycle regulation and caspase activation in tumor cells. Treatment with Lfcin-B resulted in the production of intracellular reactive oxygen species (ROS) during apoptosis of THP-1 cells. Biochemical analysis revealed that Lfcin-B-induced apoptosis. the cell cycle arrest and caspase activation were completely abrogated by addition of an antioxidant such as N-acetylcysteine(NAC). (omitted)

  • PDF

Effects of Rhus verniciflua Stokes Extract on Cell Viability, Cell Cycle Progression and Apoptosis of AGS Cell (건칠(乾漆)이 위암세포의 활성, 세포사멸 및 세포주기관련 유전자 발현에 미치는 영향)

  • An, Jin-Yeong;Ko, Seong-Gyu;Ko, Heung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.3
    • /
    • pp.701-709
    • /
    • 2006
  • The Rhus verniciflua Stokes (乾漆-RVS) has been used in traditional East Asia medicine for the therapy of gastritis, stomach cancer, although the mechanism for the biological activity is unclear. In the present study aims to investigate RVS extract contributes to growth inhibitory effect and it's the molecular mechanism on the human gastric cancer cells. AGS (gastric cancer cells) and RIEI (normal cells) were treated to different concentrations and periods of RVS extract $(10{\;}{\sim{{\;}100{\;}ug/mil)$. Growth inhibitory effect was analyzed by measuring FACS study and MTS assay. Cell cycle inhibition was confirmed by measuring CDK2 kinase activity by immunoprecipitation and kinase assay. And apoptosis was confirmed by surveying caspase cascades activation using a pan caspase inhibitor Exposure to RVS extract (50 ug/mll) resulted in a synergistic inhibitory effect on cell growth in AGS cells. Growth inhibition was related with the inhibition of proliferation and induction of apoptosis. The extract induces Gl -cell cycle arrest through the regulation of cyclins, the induction of p27kip1, and the decrease CDK2 kinase activity. And upregulated p27kip1 level is caused by protein stability increment by the reduction of S-phase kinase-associated protein 2 (Skp2), a key molecule related with p27kip1 ubiquitination and degradation, and do novo protein synthesis. Besides, 乾漆 extract induces apoptosis through the expression of Bax, poly(ADP-ribose) polymerase (PARP) and activation of caspase-3. RVS extract induces Gl -cell cycle arrest via accumulation of p27kip1 and apoptosis in human gastric cancer cells but not in normal cells, therefore we suggest that the extract can be used as a novel class of anti-cancer drugs.

Evidence of an Epigenetic Modification in Cell-cycle Arrest Caused by the Use of Ultra-highly-diluted Gonolobus Condurango Extract

  • Bishayee, Kausik;Sikdar, Sourav;Khuda-Bukhsh, Anisur Rahman
    • Journal of Pharmacopuncture
    • /
    • v.16 no.4
    • /
    • pp.7-13
    • /
    • 2013
  • Objectives: Whether the ultra-highly-diluted remedies used in homeopathy can effectively bring about modulations of gene expressions through acetylation/deacetylation of histones has not been explored. Therefore, in this study, we pointedly checked if the homeopathically-diluted anti-cancer remedy Condurango 30C (ethanolic extract of Gonolobus condurango diluted $10^{-60}$ times) was capable of arresting the cell cycles in cervical cancer cells HeLa by triggering an epigenetic modification through modulation of the activity of the key enzyme histone deacetylase 2 vis-a-vis the succussed alcohol (placebo) control. Methods: We checked the activity of different signal proteins (like $p21^{WAF}$, p53, Akt, STAT3) related to deacetylation, cell growth and differentiation by western blotting and analyzed cell-cycle arrest, if any, by fluorescence activated cell sorting. After viability assays had been performed with Condurango 30C and with a placebo, the activities of histone de-acetylase (HDAC) enzymes 1 and 2 were measured colorimetrically. Results: While Condurango 30C induced cytotoxicity in HeLa cells in vitro and reduced HDAC2 activity quite strikingly, it apparently did not alter the HDAC1 enzyme; the placebo had no or negligible cytotoxicity against HeLa cells and could not alter either the HDAC 1 or 2 activity. Data on $p21^{WAF}$, p53, Akt, and STAT3 activities and a cell-cycle analysis revealed a reduction in DNA synthesis and G1-phase cell-cycle arrest when Condurango 30C was used at a 2% dose. Conclusion: Condurango 30C appeared to trigger key epigenetic events of gene modulation in effectively combating cancer cells, which the placebo was unable to do.

Human rpS3 is involved in DNA repair and cell cycle control

  • Kim, Hag-Dong;Jang, Chang-Young;Kim, oon-Seong;Sung, Ha-Chin;Lee, Jae-Yung;Lee, Byeong-Jae;Kim, Joon
    • Journal of Photoscience
    • /
    • v.10 no.2
    • /
    • pp.195-198
    • /
    • 2003
  • In the cellular response to DNA damaging agents, cells undergo cell cycle arrest or apoptosis against irrepairable DNA damage. RpS3 is known to function as UV DNA repair endonuclease III and ribosomal protein S3. In this study, we used normal and rpS3-overexpressed 293T cells to examine the role of rpS3 in response to DNA damaging agents. When 293T cells transfected with rpS3 were irradiated with UV, the pattern of cell cycle was dramatically changed in comparison with un-transfected 293T cells. We also found that the expression of rpS3 in normal cells was increased by treatment with DNA damaging agents. By means of Western and Northern blot analyses in rat tissues, we showed the expression pattern of rpS3 protein and its mRNA. These data suggest that DNA repair and cell cycle arrest are interrelated to each other through rpS3, and the increased expression of rpS3 seems to regulate the cell cycle arrest by DNA damaging agents.

  • PDF

Ethanol Extract from Cnidium monnieri (L.) Cusson Induces G1 Cell Cycle Arrest by Regulating Akt/GSK-3β/p53 Signaling Pathways in AGS Gastric Cancer Cells (AGS 위암세포에서 Akt/GSK-3β/p53 신호경로 조절을 통한 벌사상자 에탄올 추출물의 G1 Cell Cycle Arrest 유도 효과)

  • Lim, Eun Gyeong;Kim, Eun Ji;Kim, Bo Min;Kim, Sang-Yong;Ha, Sung Ho;Kim, Young Min
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.4
    • /
    • pp.417-425
    • /
    • 2017
  • Cnidium monnieri (L.) Cusson is distributed in China and Korea, and the fruit of C. monnieri is used as traditional Chinese medicine to treat carbuncle and pain in female genitalia. In this study, we examined the anti-proliferation and cell cycle arrest effects of ethanol extracts from C. monnieri (CME) in AGS gastric cancer cells. Our results show that CME suppressed cell proliferation and induced release of lactate dehydrogenase (LDH) in AGS cells by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay and LDH assay. Cell morphology was altered by CME in a dose-dependent manner. In order to identify the cell cycle arrest effects of CME, we investigated cell cycle analysis after CME treatment. In our results, CME induced cell cycle arrest at G1 phase. Protein kinase B (Akt) plays a major role in cell survival mechanisms such as growth, division, and metastasis. Akt protein regulates various downstream proteins such as glycogen synthase kinase-$3{\beta}$ (GSK-$3{\beta}$) and tumor protein p53 (p53). Expression levels of p-Akt, p-GSK-$3{\beta}$, p53, p21, cyclin E, and cyclin-dependent kinase 2 (CDK2) were determined by Western blot analysis. Protein levels of p-Akt, p-GSK-$3{\beta}$, and cyclin E were reduced while those of p53, p21, and p-CDK2 (T14/Y15) were elevated by CME. Moreover, treatment with CME, LY294002 (phosphoinositide 3-kinase/Akt inhibitor), BIO (GSK-$3{\beta}$ inhibitor), and Pifithrin-${\alpha}$ (p53 inhibitor) showed that cell cycle arrest effects were mediated through regulation of the Akt/GSK-$3{\beta}$/p53 signaling pathway. These results suggest that CME induces cell cycle arrest at G1 phase via the Akt/GSK-$3{\beta}$/p53 signaling pathway in AGS gastric cancer cells.

Anti-Proliferative Effect of Polysaccharides from Salicornia herbacea on Induction of G2/M Arrest and Apoptosis in Human Colon Cancer Cells

  • Ryu, Deok-Seon;Kim, Seon-Hee;Lee, Dong-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1482-1489
    • /
    • 2009
  • In this study, we investigated the anti-proliferative effect of polysaccharides from Salicornia herbacea on HT-29 human colon cancer cells. Crude polysaccharides from S. herbacea (CS) were prepared by extraction with hot steam water, and fine polysaccharides from S. herbacea (PS) were obtained through further size exclusion chromatography. The anti-proliferative effect of CS and PS were measured using the MTS assay, apoptosis analysis, cell cycle analysis, and RT-PCR. HT-29 cells were treated with CS or PS at different dosages (0.5, 1, 2, 4 mg $ml^{-1}$) for 24 or 48 h. CS and PS inhibited proliferation and stimulated apoptosis of cells in a dose-dependent manner. Flow cytometric analysis after Annexin V-FITC and PI staining revealed that treatment with CS or PS increased total apoptotic death of cells to 24.99% or 91.59%, respectively, in comparison with the control (13.51 %). PS increased early apoptotic death substantially - up to 12 times more than the control. Treatment with CS or PS resulted in a concentration-dependent increase of the G2/M cell population of the cell cycle as determined by flow cytometry. G2/M arrest was induced significantly with the highest concentration (4 mg $ml^{-1}$) of PS. RT-PCR was performed to study the correlation between G2/M arrest and transcription of cell cycle control genes. The anti-proliferative activity of CS and PS was accompanied by inhibition of cyclin B1, and Cdc 2 mRNA. Moreover, both CS and PS induced expression of the p53 tumor suppressor gene and the Cdk inhibitor p21. These results suggest that polysaccharides from S. herbacea have anti-cancer activity in human colon cancer cells.