• Title/Summary/Keyword: cell-cell adhesion

Search Result 1,112, Processing Time 0.026 seconds

Ginsenoside Rg2 Inhibits Lipopolysaccharide-Induced Adhesion Molecule Expression in Human Umbilical Vein Endothelial Cell

  • Cho, Young-Suk;Kim, Chan Hyung;Ha, Tae-Sun;Lee, Sang Jin;Ahn, Hee Yul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.2
    • /
    • pp.133-137
    • /
    • 2013
  • Vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), P- and E-selectin play a pivotal role for initiation of atherosclerosis. Ginsenoside, a class of steroid glycosides, is abundant in Panax ginseng root, which has been used for prevention of illness in Korea. In this study, we investigated the mechanism(s) by which ginsenoside Rg2 may inhibit VCAM-1 and ICAM-1 expressions stimulated with lipopolysaccharide (LPS) in human umbilical vein endothelial cell (HUVEC). LPS increased VCAM-1 and ICAM-1 expression. Ginsenoside Rg2 prevented LPS-mediated increase of VCAM-1 and ICAM-1 expression. On the other hand, JSH, a nuclear factor kappa B (NF-${\kappa}B$) inhibitor, reduced both VCAM-1 and ICAM-1 expression stimulated with LPS. SB202190, inhibitor of p38 mitogen-activated protein kinase (p38 MAPK), and wortmannin, phosphatidylinositol 3-kinase (PI3-kinase) inhibitor, reduced LPS-mediated VCAM-1 but not ICAM-1 expression. PD98059, inhibitor of mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) did not affect VCAM-1 and ICAM-1 expression stimulated with LPS. SP600125, inhibitor of c-Jun N-terminal kinase (JNK), reduced LPS-mediated ICAM-1 but not VCAM-1 expression. LPS reduced IkappaB${\alpha}$ ($I{\kappa}B{\alpha}$) expression, in a time-dependent manner within 1 hr. Ginsenoside Rg2 prevented the decrease of $I{\kappa}B{\alpha}$ expression stimulated with LPS. Moreover, ginsenoside Rg2 reduced LPS-mediated THP-1 monocyte adhesion to HUVEC, in a concentration-dependent manner. These data provide a novel mechanism where the ginsenoside Rg2 may provide direct vascular benefits with inhibition of leukocyte adhesion into vascular wall thereby providing protection against vascular inflammatory disease.

MC3T3-E1 osteoblast adhesion to laser induced hydroxyapatite coating on Ti alloy

  • Huang, Lu;Goddard, Samuel C.;Soundarapandian, Santhanakrishnan;Cao, Yu;Dahotre, Narendra B.;He, Wei
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.1 no.2
    • /
    • pp.81-93
    • /
    • 2014
  • An in vitro cell study evaluating cell adhesion to hydroxyapatite (HA) coated prosthetic Ti-6Al-4V alloy via laser treatment is presented in comparison with uncoated alloy. Based on our previous in vitro biocompatibility study, which demonstrated higher cell attachment and proliferation with MC3T3-E1 preosteoblast cells, the present investigation aims to reveal the effect of laser coating Ti alloy with HA on the adhesion strength of bone-forming cells against centrifugal forces. Remaining cells on different substrates after centrifugation were visualized using fluorescent staining. Semi-quantifications on the numbers of cells were conducted based on fluorescent images, which demonstrated higher numbers of cells retained on HA laser treated substrates post centrifugation. The results indicate potential increase in the normalized maximum force required to displace cells from HA coated surfaces versus uncoated control surface. The possible mechanisms that govern the enhancing effect were discussed, including surface roughness, chemistry, wettability, and protein adsorption. The improvement in cell adhesion through laser treatment with a biomimetic coating could be useful in reducing tissue damage at the prosthetic to bone junction and minimizing the loosening of prosthetics over time.

The effect of retinoic acid on the expression of cell adhesion molecules and binding ability to peritoneal mesothelium in gastric cancer cells (위암세포에서 세포유착물질의 발현 및 위암세포의 복막 내피세포에 대한 결합 능에 미치는 retinoicacid의 영향)

  • Hong, Young Seon;Park, Cho Hyun;Park, Jin-No;Lee, Kyung Shik;Kim, In Chul
    • IMMUNE NETWORK
    • /
    • v.1 no.1
    • /
    • pp.36-44
    • /
    • 2001
  • Background : Peritoneal metastasis is one of the maj or types of the stomach cancer recurrence and the role of the adhesion molecules is thought to be very much important in this event. Retinoic acid (RA) has been known to induce the growth inhibition and differentiation of various malignancies, and apoptpsis and the change of expression of adhesion molecules have been reported to be involved in the action of RA. Methods : We studied the adhesion abilities of SNU-1, SNU-5, and SNU-6 cells to the peritoneal endothelial cells as well as the expression of the adhesion molecules (CD44, ICAM-1) in Western blot analysis. And also we studied the expression of apoptosis and the change of expression patterns of the various isoforms of CD44 and the change of the adhsion abilities of the cell line cells after RA treatment. Results: CD44 was expressed in SNU-5 and -16, together with an isoform in SNU-16. ICAM-1 was not expressed in any of the cell line cells tested. After the treatment of RA in the concentration range of $1-5{\times}10^{-5}M$ to three stomach cancer cell lines, growth inhibition, apoptosis and the change of expression of the CD44 were noted. After RA treatment, the expression of CD44H was weakly increased in SNU-1, and was markedly increased in SNU-5. In SNU-16, the expression of CD44H was decreased while that of CD44E were markedly increased. The adhesibility of cells to peritoneal cells was increased in relation with the increase of the CD44H expression, which shows the fact that the adhesibility of tumor cells to peritoneal mesothelial cells is mediated by CD44H recognizing hyaluronic acid. Conclusion : RA induces growth inhibition of stomach cancer cell line cells and increase the adhesiblity of stomach cancer cell line cells to peritoneal mesothelium. It is believed that RA decreases the metastatic ability of stomach cancer cells by upregulating the CD44H expression.

  • PDF

Adhesion of Human Osteoblasts Cell on TiN Thin Film Deposited by Cathodic Arc Plasma Deposition

  • Pham, Vuong Hung;Kim, Sun-Kyu;Le, Vinh Van;Kwon, Byoung-Se
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.6
    • /
    • pp.264-268
    • /
    • 2008
  • Interaction between human osteoblast and TiN films was conducted in vitro. TiN films were produced by cathodic arc plasma deposition. The surface was characterized by atomic force microscopy (AFM). TiN films, glass substrates and Ti films were cultured with human osteoblasts for 48 and 72 h hours. Actin stress fiber patterns and microtubules of osteoblasts were found slightly more organized and distributed on TiN films compared to those on the Ti films and the glass substrates. Human osteoblasts also showed slightly higher cell attachment, proliferation, and focal contact adhesion on TiN films compared to those on Ti films and glass substrates. Our results demonstrated that TiN films showed slightly better cellular adhesion of osteoblasts than Ti films and glass substrates in a short-time culture period.

Improved Adhesion of Solar Cell Cover Glass with Surface-Flourinated Coating Using Atmospheric Pressure Plasma Treatment (상압 플라즈마 표면처리를 통한 태양광모듈 커버글라스와 불소계 코팅의 응착력 향상)

  • Kim, Taehyeon;Park, Woosang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.4
    • /
    • pp.244-248
    • /
    • 2018
  • We propose a method for improving the reliability of a solar cell by applying a fluorinated surface coating to protect the cell from the outdoor environment using an atmospheric pressure plasma (APP) treatment. An APP source is operated by radio frequency (RF) power, Ar gas, and $O_2gas$. APP treatment can remove organic contaminants from the surface and improve other surface properties such as the surface free energy. We determined the optimal APP parameters to maximize the surface free energy by using the dyne pen test. Then we used the scratch test in order to confirm the correlation between the APP parameters and the surface properties by measuring the surface free energy and adhesive characteristics of the coating. Consequently, an increase in the surface free energy of the cover glass caused an improvement in the adhesion between the coating layer and the cover glass. After treatment, adhesion between the coating and cover glass was improved by 35%.

Inhibitory effect of the extract of Catalpa ovata G. Don. on endothelial adhesion molecule expression (개오동나무 추출물의 내피세포 부착분자 발현 억제 효과)

  • Choi, Byung-Min;Chong, Myong-Soo;Song, Ho-Joon
    • The Korea Journal of Herbology
    • /
    • v.22 no.4
    • /
    • pp.137-143
    • /
    • 2007
  • Objectives : Catalpa ovata G. Don (Bignoniaceae) has been shown to possess a variety of pharmacological activities. However, the effect of Catalpa ovata G. Don on endothelial adhesion molecule expression has not been reported. Methods : To examine the effect of Catalpa ovata G. Don on the expression of adhesion molecules in human umbilical vein endothelial cells (HUVECs) stimulated with tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), we used various methods such as Western blot analysis, reverse tranascription-polymerase chain reaction (RT-PCR), and luciferase activity assay. Results : 1. The extract of Catalpa ovata G. Don inhibited the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in HUVECs stimulated with TNF-${\alpha}$. 2. The extract of Catalpa ovata G. Don reduced TNF-${\alpha}$-induced adhesion of leukocytes to HUVECs. 3. In addition, The extract of Catalpa ovata G. Don inhibited the promoter activities of ICAM-1 and VCAM-1. Conclusions : These results that Catalpa ovata G. Don may be beneficial in the treatment of inflammatory such as atherosclerosis.

  • PDF

Loss of βPix Causes Defects in Early Embryonic Development, and Cell Spreading and Platelet-Derived Growth Factor-Induced Chemotaxis in Mouse Embryonic Fibroblasts

  • Kang, TaeIn;Lee, Seung Joon;Kwon, Younghee;Park, Dongeun
    • Molecules and Cells
    • /
    • v.42 no.8
    • /
    • pp.589-596
    • /
    • 2019
  • ${\beta}Pix$ is a guanine nucleotide exchange factor for the Rho family small GTPases, Rac1 and Cdc42. It is known to regulate focal adhesion dynamics and cell migration. However, the in vivo role of ${\beta}Pix$ is currently not well understood. Here, we report the production and characterization of ${\beta}Pix$-KO mice. Loss of ${\beta}Pix$ results in embryonic lethality accompanied by abnormal developmental features, such as incomplete neural tube closure, impaired axial rotation, and failure of allantois-chorion fusion. We also generated ${\beta}Pix$-KO mouse embryonic fibroblasts (MEFs) to examine ${\beta}Pix$ function in mouse fibroblasts. ${\beta}Pix$-KO MEFs exhibit decreased Rac1 activity, and defects in cell spreading and platelet-derived growth factor (PDGF)-induced ruffle formation and chemotaxis. The average size of focal adhesions is increased in ${\beta}Pix$-KO MEFs. Interestingly, ${\beta}Pix$-KO MEFs showed increased motility in random migration and rapid wound healing with elevated levels of MLC2 phosphorylation. Taken together, our data demonstrate that ${\beta}Pix$ plays essential roles in early embryonic development, cell spreading, and cell migration in fibroblasts.

Gefitinib induces anoikis in cervical cancer cells

  • Byung Chul Jung;Sung-Hun Woo;Sung Hoon Kim;Yoon Suk Kim
    • BMB Reports
    • /
    • v.57 no.2
    • /
    • pp.104-109
    • /
    • 2024
  • Gefitinib exerts anticancer effects on various types of cancer, such as lung, ovarian, breast, and colon cancers. However, the therapeutic effects of gefitinib on cervical cancer and the underlying mechanisms remain unclear. Thus, this study aimed to explore whether gefitinib can be used to treat cervical cancer and elucidate the underlying mechanisms. Results showed that gefitinib induced a caspase-dependent apoptosis of HeLa cells, which consequently became round and detached from the surface of the culture plate. Gefitinib induced the reorganization of actin cytoskeleton and downregulated the expression of p-FAK, integrin β1 and E-cadherin, which are important in cell-extracellular matrix adhesion and cell-cell interaction, respectively. Moreover, gefitinib hindered cell reattachment and spreading and suppressed interactions between detached cells in suspension, leading to poly (ADP-ribose) polymerase cleavage, a hallmark of apoptosis. It also induced detachment-induced apoptosis (anoikis) in C33A cells, another cervical cancer cell line. Taken together, these results suggest that gefitinib triggers anoikis in cervical cancer cells. Our findings may serve as a basis for broadening the range of anticancer drugs used to treat cervical cancer.

A Study on the Relationship between Factors Affecting Soldering Characteristics and Efficiency of Half-cell Soldering Process with Multi-wires (Half-cell 기반 multi-wires 접합 공정에서 접합 특성에 영향을 주는 요인과 효율의 상관관계 연구)

  • Kim, Jae Hun;Son, Hyoung Jin;Kim, Sung Hyun
    • Current Photovoltaic Research
    • /
    • v.7 no.3
    • /
    • pp.65-70
    • /
    • 2019
  • As a demand of higher power photovoltaic modules, shingled, multi-busbar, half-cell, and bifacial techniques are developed. Multi-busbar module has advantage for large amount of light havesting. And, half-cell is high power module for reducing resistive losses and higher shade tolerance. Recently, researches on multi-busbar is focused on reliability according to adhesion and intermetallic compound between Sn-Pb solder and Ag electrode. And half-cell module is researched to comparing with full-sized cell module for structure difference. In this study, we investigated the factors affecting to efficiency and adhesion of multi-wires half-cell module according to wire thickness, solder thickness, and flux. The results of solar simulator and peel test was that peel strength and efficiency of soldered cell is not related. But samples with flux including high solid material showed high efficiency. The results of FE-SEM and EDX line scan on cross-section between wire and Ag electrode for different flux showed thickness of solder joint between wire and Ag electrode is increasing through solid material increasing. Flux including high solid material would affect to solder behavior on Ag electrode. Higher solid material occurred lower growth of IMC layer because solder permeate to sider of wire ribbon than Ag electrode. And it increased fill factor for high efficiency. In soldering process, amount of solid material in flux and solder thickness are the factor related with characteristic of soldered photovoltaic cell.

Manassantin A and B Isolated from Saururus chinensis Inhibit $TNF-{\alpha}-Induced$ Cell Adhesion Molecule Expression of Human Umbilical Vein Endothelial Cells

  • Kwon Oh Eok;Lee Hyun Sun;Lee Seung Woong;Chung Mi Yeon;Bae Ki Hwan;Rho Mun-Chual;Kim Young-kook
    • Archives of Pharmacal Research
    • /
    • v.28 no.1
    • /
    • pp.55-60
    • /
    • 2005
  • Leukocyte adhesion to the vascular endothelium is a critical initiating step in inflammation and atherosclerosis. We have herein studied the effect of manassantin A (1) and S (2), dineolignans, on interaction of THP-1 monocytic cells and human umbilical vein endothelial cells (HUVEC) and expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin in HUVEC. When HUVEC were pretreated with 1 and 2 followed by stimulation with $TNF-{\alpha}$, adhesion of THP-1 cells to HUVEC decreased in dose-dependent manner with $IC_{50}$ values of 5 ng/mL and 7 ng/mL, respectively, without cytotoxicity. Also, 1 and 2 inhibited $TNF-{\alpha}-induceda$ up-regulation of ICAM-1, VCAM-1 and E-selectin. The present findings suggest that 1 and 2 prevent monocyte adhesion to HUVEC through the inhibition of ICAM-1, VCAM-1 and E-selectin expression stimulated by $TNF-\alpha$, and may imply their usefulness for the prevention of atherosclerosis relevant to endothelial activation.