DOI QR코드

DOI QR Code

Gefitinib induces anoikis in cervical cancer cells

  • Byung Chul Jung (Department of Nutritional Sciences and Toxicology, University of California) ;
  • Sung-Hun Woo (Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University) ;
  • Sung Hoon Kim (Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University) ;
  • Yoon Suk Kim (Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University)
  • Received : 2023.11.28
  • Accepted : 2023.12.29
  • Published : 2024.02.29

Abstract

Gefitinib exerts anticancer effects on various types of cancer, such as lung, ovarian, breast, and colon cancers. However, the therapeutic effects of gefitinib on cervical cancer and the underlying mechanisms remain unclear. Thus, this study aimed to explore whether gefitinib can be used to treat cervical cancer and elucidate the underlying mechanisms. Results showed that gefitinib induced a caspase-dependent apoptosis of HeLa cells, which consequently became round and detached from the surface of the culture plate. Gefitinib induced the reorganization of actin cytoskeleton and downregulated the expression of p-FAK, integrin β1 and E-cadherin, which are important in cell-extracellular matrix adhesion and cell-cell interaction, respectively. Moreover, gefitinib hindered cell reattachment and spreading and suppressed interactions between detached cells in suspension, leading to poly (ADP-ribose) polymerase cleavage, a hallmark of apoptosis. It also induced detachment-induced apoptosis (anoikis) in C33A cells, another cervical cancer cell line. Taken together, these results suggest that gefitinib triggers anoikis in cervical cancer cells. Our findings may serve as a basis for broadening the range of anticancer drugs used to treat cervical cancer.

Keywords

References

  1. Sung H, Ferlay J, Siegel RL et al (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 71, 209-249 https://doi.org/10.3322/caac.21660
  2. Audet-Delage Y, St-Louis C, Minarrieta L et al (2023) Spatiotemporal modeling of chemoresistance evolution in breast tumors uncovers dependencies on SLC38A7 and SLC46A1. Cell Rep 42, 113191
  3. Kazandjian D, Blumenthal GM, Yuan W, He K, Keegan P and Pazdur R (2016) FDA approval of gefitinib for the treatment of patients with metastatic EGFR mutation-positive non-small cell lung cancer. Clin Cancer Res 22, 1307-1312 https://doi.org/10.1158/1078-0432.CCR-15-2266
  4. Krishna A, Sathya M, Mukesh S et al (2023) Efficacy and safety of EGFR inhibitor gefitinib in recurrent or metastatic cervical cancer: a preliminary report. Med Oncol 40, 203
  5. Irshad R, Haider G, Hashmi M and Hassan A (2021) Efficacy of gefitinib and methorexate in patients with advanced stage and recurrent head and neck cancer. Cureus 13, e15451
  6. Sharma DN, Rath GK, Julka PK, Gandhi AK, Jagadesan P and Kumar S (2013) Role of gefitinib in patients with recurrent or metastatic cervical carcinoma ineligible or refractory to systemic chemotherapy: first study from Asia. Int J Gynecol Cancer 23, 705-709 https://doi.org/10.1097/IGC.0b013e31828b1699
  7. Benson R, Pathy S, Kumar L, Mathur S, Dadhwal V and Mohanti BK (2019) Locally advanced cervical cancer - neoadjuvant chemotherapy followed by concurrent chemoradiation and targeted therapy as maintenance: a phase II study. J Cancer Res Ther 15, 1359-1364 https://doi.org/10.4103/jcrt.JCRT_39_18
  8. Zheng J, Yu J, Yang M and Tang L (2019) Gefitinib suppresses cervical cancer progression by inhibiting cell cycle progression and epithelial-mesenchymal transition. Exp Ther Med 18, 1823-1830
  9. Giocanti N, Hennequin C, Rouillard D, Defrance R and Favaudon V (2004) Additive interaction of gefitinib ('Iressa', ZD1839) and ionising radiation in human tumour cells in vitro. Br J Cancer 91, 2026-2033 https://doi.org/10.1038/sj.bjc.6602242
  10. Kang J, Chun J, Hwang JS et al (2022) EGFR-phosphorylated GDH1 harmonizes with RSK2 to drive CREB activation and tumor metastasis in EGFR-activated lung cancer. Cell Rep 41, 111827
  11. Xiao T, Xu Z, Zhang H et al (2019) TP53I11 suppresses epithelial-mesenchymal transition and metastasis of breast cancer cells. BMB Rep 52, 379-384 https://doi.org/10.5483/BMBRep.2019.52.6.173
  12. Vivo M, Fontana R, Ranieri M et al (2017) p14ARF interacts with the focal adhesion kinase and protects cells from anoikis. Oncogene 36, 4913-4928 https://doi.org/10.1038/onc.2017.104
  13. Kim A, Im M and Ma JY (2017) SRVF, a novel herbal formula including Scrophulariae Radix and Viticis Fructus, disrupts focal adhesion and causes detachment-induced apoptosis in malignant cancer cells. Sci Rep 7, 12756
  14. Sodek KL, Murphy KJ, Brown TJ and Ringuette MJ (2012) Cell-cell and cell-matrix dynamics in intraperitoneal cancer metastasis. Cancer Metastasis Rev 31, 397-414 https://doi.org/10.1007/s10555-012-9351-2
  15. Mason JA, Cockfield JA, Pape DJ et al (2021) SGK1 signaling promotes glucose metabolism and survival in extracellular matrix detached cells. Cell Rep 34, 108821
  16. Michael KE, Dumbauld DW, Burns KL, Hanks SK and Garcia AJ (2009) Focal adhesion kinase modulates cell adhesion strengthening via integrin activation. Mol Biol Cell 20, 2508-2519
  17. Golubovskaya VM, Gross S, Kaur AS et al (2003) Simultaneous inhibition of focal adhesion kinase and SRC enhances detachment and apoptosis in colon cancer cell lines. Mol Cancer Res 1, 755-764
  18. Hofmann C, Obermeier F, Artinger M et al (2007) Cell-cell contacts prevent anoikis in primary human colonic epithelial cells. Gastroenterology 132, 587-600 https://doi.org/10.1053/j.gastro.2006.11.017
  19. Shonibare Z, Monavarian M, O'Connell K et al (2022) Reciprocal SOX2 regulation by SMAD1-SMAD3 is critical for anoikis resistance and metastasis in cancer. Cell Rep 40, 111066
  20. Paoli P, Giannoni E and Chiarugi P (2013) Anoikis molecular pathways and its role in cancer progression. Biochim Biophys Acta 1833, 3481-3498
  21. Taddei ML, Giannoni E, Fiaschi T and Chiarugi P (2012) Anoikis: an emerging hallmark in health and diseases. J Pathol 226, 380-393 https://doi.org/10.1002/path.3000
  22. Peng JM, Chen WY, Cheng JH, Luo JW and Tzeng HT (2021) Dysregulation of cytoskeleton remodeling drives invasive leading cells detachment. Cancers (Basel) 13, 5648
  23. Bharadwaj S, Thanawala R, Bon G, Falcioni R and Prasad GL (2005) Resensitization of breast cancer cells to anoikis by tropomyosin-1: role of Rho kinase-dependent cytoskeleton and adhesion. Oncogene 24, 8291-8303 https://doi.org/10.1038/sj.onc.1208993
  24. Huang Y, Comiskey EO, Dupree RS, Li S, Koleske AJ and Burkhardt JK (2008) The c-Abl tyrosine kinase regulates actin remodeling at the immune synapse. Blood 112, 111-119
  25. Woodring PJ, Hunter T and Wang JY (2003) Regulation of F-actin-dependent processes by the Abl family of tyrosine kinases. J Cell Sci 116, 2613-2626 https://doi.org/10.1242/jcs.00622
  26. Paschos KA, Canovas D and Bird NC (2009) The role of cell adhesion molecules in the progression of colorectal cancer and the development of liver metastasis. Cell Signal 21, 665-674
  27. Spiess M, Hernandez-Varas P, Oddone A et al (2018) Active and inactive beta1 integrins segregate into distinct nanoclusters in focal adhesions. J Cell Biol 217, 1929-1940 https://doi.org/10.1083/jcb.201707075
  28. Kim B, van Golen CM and Feldman EL (2003) Degradation and dephosphorylation of focal adhesion kinase during okadaic acid-induced apoptosis in human neuroblastoma cells. Neoplasia 5, 405-416 https://doi.org/10.1016/S1476-5586(03)80043-X
  29. Vachon PH (2018) Methods for assessing apoptosis and anoikis in normal intestine/colon and colorectal cancer. Methods Mol Biol 1765, 99-137 https://doi.org/10.1007/978-1-4939-7765-9_7