• Title/Summary/Keyword: cell-based simulation model

Search Result 280, Processing Time 0.026 seconds

Atomistic simulation of structural and elastic modulus of ZnO nanowires and nanotubes (산화아연 나노선과 나노튜브의 구조 및 탄성계수에 관한 원자단위 연구)

  • Moon, W.H.;Choi, C.H.;Hwang, H.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.429-429
    • /
    • 2008
  • The structural stability and the elastic modulus of hexagonal ZnO nanowires and nanotubes are investigated using atomistic simulations based on the shell model. The ZnO nanowire with (10-10) facets is energetically more stable than that with (11-20). Our calculations indicate that the structural change of ZnO nanowires with (10-10) facets is sensitive to the diameter. With decreasing the diameter of ZnO nanowires, the unit-cell length is increased while the bond-length is reduced due to the change of surface atoms. Unlike the conventional layered nanotubes, the energetic stability of single crystalline ZnO nanotubes is related to the wall thickness. The potential energy of ZnO nanotubes with fixed outer and inner diameters decreases with increasing wall thickness while the nanotubes with same wall thickness are independent of the outer and inner diameters. The transformation of single crystalline ZnO nanotubes with double layer from wurtzite phase to graphitic suggests the possibility of wall-typed ZnO nanotubes. The size-dependent Young's modulus for ZnO nanowires and nanotubes is also calculated. The diameter and the wall thickness play a significant role in the Young's modulus of single crystalline ZnO nanowires and nanotubes, respectively.

  • PDF

A Study on Interference Analysis between Base Stations with FDD and TDD Modes for IMT-2000 (FDD 및 TDD 모드 채용 IMT-2000 시스템 기지국간 간섭분석 연구)

  • 이일근;이형수;이정규;신경철;김경태
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.1
    • /
    • pp.11-17
    • /
    • 2001
  • This paper introduces an interference analyzer based on the statistical approach called the Monte Carlo methodology, which has been chosen as one of the interference analyzing techniques in ITU-R. Furthermore, using the interference analyzer developed in this paper with modified Hata model, computer simulation is performed to examine probability of interference affecting between the base stations with FDD and TDD modes for IMT-2000. Through the simulation results, it is confirmed that two different systems with FDD/TDD modes of same frequency bands can be simultaneously used in a cell without significant interference, under the parameter conditions specified in this paper.

  • PDF

Effect of the characteristics of buoy on the holding power of trapnet (부이의 특성이 통발어구의 고정력에 미치는 영향)

  • LEE, Gun-Ho;CHO, Sam-Kwang;KIM, In-Ok;CHA, Bong-Jin;JUNG, Seong-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.4
    • /
    • pp.309-316
    • /
    • 2017
  • In this paper, numerical modeling is conducted to analyze the tension of an anchor line by varying the size and drag coefficient of a buoy when the trapnet is influenced by the wave and the current simultaneously. A mass-spring model was used to analyze the behavior of trapnet underwater under the influence of waves and current. In the simulation of numerical model, wave height of 3, 4, 5 and 6 m, a period of 4.4 s, and the flow speed of 0.7 m/s were used for the wave and current condition. The drag coefficients of buoy were 0.8, 0.4 and 0.2, respectively. The size of buoy was 100, 50 and 25% based on the cylindrical buoy ($0.0311m^3$) used for swimming crab trap. The drag coefficient of the trapnet, the main model for numerical analysis, was obtained by a circular water channel experiment using a 6-component load cell. As a result of the simulation, the tension of the anchor line decreased proportional to buoy's drag coefficient and size; the higher the wave height, the greater the decrease rate of the tension. When the buoy drag coefficient and size decreased to one fourth, the tension of the anchor line decreased to a half and the tension of the anchor line was lower than the holding power of the anchor even at 6 m of wave height. Therefore, reducing the buoy drag coefficient and size appropriately reduces the trapnet load from the wave, which also reduces the possibility of trapnet loss.

An Analysis on the Discharge Characteristics through 1-D Numerical Simulation in an AC PDP (AC PDP에서 1차원 수치해석을 통한 방전 특성 연구)

  • Lee, J.H.;Seo, J.H.;Lee, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.220-222
    • /
    • 2003
  • In this paper, we analyze on the discharge characteristics through 1-D simulations in an at plasma display panel discharge cell. The model is based on a Poisson' equation, continuity and drift-diffusion equation. Results are presented in a 95% neon, 5% xenon gas mixture, for a gap length of 100us and a gas pressure of 400Torr at ambient temperature. Results for other gap length are also discussed. As a result, an increase of the gap cause increase of luminous efficiency but with larger sustaining voltage.

  • PDF

A MODEL STUDY ON MULTISTEP RECOVERY OF ACTINIDES BASED ON THE DIFFERENCE IN DIFFUSION COEFFICIENTS WITHIN LIQUID METAL

  • CHUN, YOUNG-MIN;SHIN, HEON-CHEOL
    • Nuclear Engineering and Technology
    • /
    • v.47 no.5
    • /
    • pp.588-595
    • /
    • 2015
  • This study presents an effective method for additional recovery of residual actinides in liquid electrodes after the electrowinning process of pyroprocessing. The major distinctive feature of this method is a reactor with multiple reaction cells separated by partition walls in order to improve the recovery yield, thereby using the interelement difference in diffusion coefficients within the liquid electrode and controlling the selectivity and purity of element recovery. Through an example of numerical simulation of the diffusion scenarios of individual elements, we verified that the proposed method could effectively separate the actinides (U and Pu) and rare-earth elements contained in liquid cadmium. We performed a five-step consecutive recovery process using a simplified conceptual reaction cell and recovered 58% of the initial amount of actinides (U + Pu) in high purity (${\geq}99%$).

Time Measurement on GPU-based LCTM Simulation (GPU 기반 LCTM 교통 시뮬레이션에서의 성능 측정)

  • KYUNG, MinGi;Shin, In-soo;Cho, Min-Kyu;Min, Dugki
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.141-143
    • /
    • 2019
  • 본 연구에서는 메소스코픽 교통 시뮬레이션 모델의 하나인 LCTM(Lane Cell Transmission Model) 모델을 GPU 기반의 병렬 교통 시뮬레이션의 형태로 구현하여, 수행한 시뮬레이션 시간을 측정하였다. 본 논문에서는 LCTM 교통 시뮬레이션의 병렬화 고려사항들을 언급하고, GPU 를 사용한 병렬 교통 시뮬레이션 구현 시, 성능에 영향을 미치는 요소들을 분석한 후, 측정하였다.

A Comparative Assessment of Hydrogen Facility Installation for Net-Zero Energy District Planning (제로에너지단지의 적정 수소 활용 규모 및 운용방식에 관한 연구)

  • Junoh Kim;Chulhee Kim;Soyeon Chu
    • New & Renewable Energy
    • /
    • v.19 no.3
    • /
    • pp.1-12
    • /
    • 2023
  • This study aims to evaluate the optimal size of the hydrogen facility to be installed in a zero-energy district in terms of load matching and facility efficiency. A mismatch between energy generation and consumption is a common occurrence in zero-energy districts. This mismatch adversely effects the energy grid. However, using an energy carrier such as hydrogen can solve this problem. To determine the optimal size of hydrogen fuel cells to be used on-site, simulation of hydrogen installation is required at both district-and building- levels. Each case had four operating schedules. Therefore, we evaluated eight scenarios in terms of load matching, heat loss, and facility operational efficiency. The results indicate that district-level installation of hydrogen facilities enables more efficient energy use. Additionally, based on the proposed model, we can calculate the optimal size of the hydrogen facility.

A Study of Cell delay for ABR service in ATM network (ATM 네트워크에서 ABR 서비스의 셀 지연 방식에 관한 연구)

  • 이상훈;조미령;김봉수
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.9
    • /
    • pp.1163-1174
    • /
    • 2001
  • A general goal of the ATM(Asynchronous Transfer Mode) network is to support connections across various networks. ABR service using EPRCA(Enhanced Proportional Rate Control Algorithm) switch controls traffics in ATM network. EPRCA switch, traffic control method uses variation of the ACR(Allowed Cell Rate) to enhance the utilization of the link bandwidth. However, in ABR(Available Bit Rate) service, different treatments are offered according to different RTTs(Round Trip Times) of connections. To improve the above unfairness, this paper presents ABR DELAY mechanism, in which three reference parameters for cell delay are defined, and reflect on the messages of RM(Resource Management) cells. To evaluate our mechanism, we compare the fairness among TCP connections between ABR DELAY mechanism and ABR RRM mechanism. And also we execute simulations on a simple ATM network model where six TCP connections and a background traffic with different RTTs share the bandwidth of a bottleneck link. The simulation results, based on TCP goodput and efficiency, clearly show that ABR DELAY mechanism improves the fairness among TCP connections.

  • PDF

Optimization of Heat Exchange Network of SOFC Cogeneration System Based on Agricultural By-products (농산부산물 기반 SOFC 열병합발전 시스템 열교환망 최적화)

  • Gi Hoon Hong;Sunghyun Uhm;Hyungjune Jung;Sungwon Hwang
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • In this study, we constructed a process simulation model for an agricultural by-products based Solid Oxide Fuel Cell (SOFC) combined heat and power generation system as part of the introduction of technology for energy self-sufficiency in the agricultural sector. The aim was to reduce the burden of increasing fuel and electricity consumption due to rapid fluctuations in international oil prices and the expansion of smart farming in domestic farms, while contributing to the national greenhouse gas reduction goals. Based on the experimental results of 0.3 ton/day torrefied agricultural by-product gasification experiment, a model for an agricultural by-product-based SOFC cogeneration system was constructed, and optimization of the heat exchange network was conducted for SOFC capacities ranging from 4 to 20 kW. The results indicated that an 8 kW agricultural by-product-based SOFC cogeneration system was optimal under the current system conditions. It is anticipated that these research findings can serve as foundational data for future commercial facility design.

Estimation of Watershed Parameters and Runoff Computation Using GIS (GIS를 이용한 유역매개변수의 추정 및 유출량 산정)

  • Lee, Im-Keun;Ahn, Kyung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.1 s.174
    • /
    • pp.11-24
    • /
    • 2007
  • There exist various difficulties in runoff analysis due to many ungauged basins in Korea and the runoff phenomena is also more and more complicated by the change of geologic characteristics due to the urbanization. So, we use GIS technique which is widely used in hydrologic field and cell runoff concept for the fast and effective runoff simulation. This study uses the observations of 6 stage stations in Wi-Cheon watershed and simulates the watershed parameters by using WMS model. We construct DEM by the grids which are consisted based on the criteria of minimum area according to land use. The cell runoff is estimated by an average weighted method using mean annual streamflow and mean maximum daily streamflow obtained from six stage stations. The runoff ratio at arbitrary site is estimated by conducting the direction analysis of streamflow and by removing sinkhole. We compare the simulated and observed runoffs and know that the simulated runoff shows the valid results. So, we could use the geographical information and cell runoff concept for more fast and effective runoff simulation studies.