DOI QR코드

DOI QR Code

Optimization of Heat Exchange Network of SOFC Cogeneration System Based on Agricultural By-products

농산부산물 기반 SOFC 열병합발전 시스템 열교환망 최적화

  • Gi Hoon Hong (Hydrogen Energy Solution Center, Institute for Advanced Engineering) ;
  • Sunghyun Uhm (Hydrogen Energy Solution Center, Institute for Advanced Engineering) ;
  • Hyungjune Jung (Department of Chemistry and Chemical Engineering Education and Research Center for Smart Energy and Materials, Inha University) ;
  • Sungwon Hwang (Department of Chemistry and Chemical Engineering Education and Research Center for Smart Energy and Materials, Inha University)
  • 홍기훈 (고등기술연구원 수소에너지솔루션센터) ;
  • 엄성현 (고등기술연구원 수소에너지솔루션센터) ;
  • 정형준 (인하대학교) ;
  • 황성원 (인하대학교)
  • Received : 2023.12.13
  • Accepted : 2023.12.27
  • Published : 2024.03.31

Abstract

In this study, we constructed a process simulation model for an agricultural by-products based Solid Oxide Fuel Cell (SOFC) combined heat and power generation system as part of the introduction of technology for energy self-sufficiency in the agricultural sector. The aim was to reduce the burden of increasing fuel and electricity consumption due to rapid fluctuations in international oil prices and the expansion of smart farming in domestic farms, while contributing to the national greenhouse gas reduction goals. Based on the experimental results of 0.3 ton/day torrefied agricultural by-product gasification experiment, a model for an agricultural by-product-based SOFC cogeneration system was constructed, and optimization of the heat exchange network was conducted for SOFC capacities ranging from 4 to 20 kW. The results indicated that an 8 kW agricultural by-product-based SOFC cogeneration system was optimal under the current system conditions. It is anticipated that these research findings can serve as foundational data for future commercial facility design.

본 연구에서는 농업 분야 에너지 자립 시스템 기술도입의 일환으로 농산부산물 기반 SOFC 열병합발전 시스템의 공정 모사 모델을 구축하고 열교환망 최적화를 진행하였다. 0.3 ton/d급 농산부산물 반탄화 연료 가스화기 실험 결과를 기반 농산부산물 SOFC 열병합발전 시스템 모델을 구축하여 4~20 kW급 SOFC 발전 용량별 열교환망 최적화를 진행하였다. 현재 시스템상에서 8 kW급 농산부산물 기반 SOFC 열병합발전 시스템이 최적으로 도출되었으며, 본 연구 결과를 기반으로 추후 상용 설비 설계 시 기초자료로 활용이 가능할 것으로 판단된다.

Keywords

Acknowledgement

본 결과물은 농림축산식품부 및 과학기술정보통신부, 농촌진흥청의 재원으로 농림식품기술기획평가원과 재단법인 스마트팜연구개발사업단의 스마트팜다부처패키지혁신기술개발사업의 지원을 받아 연구되었음.(421037033HD020)

References

  1. 에너지관리공단, 신재생에너지 보급 통계 2010
  2. Park J. and Kim Y., "The effects of renewable energy in agricultural sector", J. Korea Acad.-Ind. Coop. Soc., 20(1), 224-235, (2019)
  3. 한국전력공사, "한국전력통계" 2020 Statistics of Electric Power in Korea, Korea Electric Power Corporation
  4. Hong G. H., Uhm S., and Hwang S. Y., "Biomass gasification for fuel cell combined-heat-and-power systems", Appl. Chem. Eng., 33(4), 335-342, (2022)
  5. Kim T.-H., and Yoon S.-Y., "Evaluation of applicability of renewable energy in controlled horticulture farms -Centering on economic analysis of geothermal․Solar powered-", Korean J. Org. Agric., 20(3), 267-282, (2012)
  6. Oh S., Shin S., and Yun S.-J., "Possibilities and issues of agrophotovoltaics as a strategic niche for energy transition and a sustainable rural society", Space Environ., 31(4), 122-170, (2021)
  7. Lee S., and Cho Y., "Economic feasibility analysis of the renewable energy based business model in the agricultural sector and policy implications - Focusing on the 'Smart Farms' using renewable energy", Innov. Stud., 15(1), 1-28, (2020) https://doi.org/10.46251/INNOS.2020.02.15.1.1
  8. Lee S.-H., Kim R.-W., Kim C.-M., Seok H.-W., and Yoon S., "Optimal capacity determination of hydrogen fuel cell technology based trigeneration system and prediction of semi-closed greenhouse dynamic energy loads using building energy simulation", J. Bio-Environ. Control, 32(3), 181-189, (2023) https://doi.org/10.12791/KSBEC.2023.32.3.181
  9. Goo J.-B., Shin H.-J., Kwak Y.-H., and Huh J.-H., "Development of smart greenhouse energy analysis model and analysis of cooling packages performance", J. Korean Sol. Energy Soc., 41(6), 1-18, (2021) https://doi.org/10.7836/kses.2021.41.6.001
  10. Corripio A.B., Chrien K.S., and Evans L.B., "Estimate costs of heat exchangers and storage tanks via correlations", Chem. Eng., 82(2), 125-127, (1982)
  11. Ahmad S., "Heat exchanger networks: cost tradeoffs in energy and capital", Ph. D. thesis, Manchester university, (1985)
  12. Mulet A., Corripio A.B., and Evans L.B., "Estimate costs of pressure vessels via correlations", Chem. Eng., 88(20), 145-150, (1981)
  13. Cotrim S. L., de Araujo M.A., Leal G.C.L., Vladimir C.G.E., Ravagnani M.A.S.S., "Parameters for cost estimation in shell and tube heat exchangers network synthesis: A systematic literature review on 30 years of research", Appl. Therm. Eng., 213, 118801, (2022)
  14. Yi J. and Anil V., "Fuel composition and diluent effect on gas transport and performance of anode-supported SOFCs", J. Electrochem. Soc., 150(7), A942-A951, (2003) https://doi.org/10.1149/1.1579480
  15. Chinchen G. C., Denny P. J., Jennings J. R., Spencer M. S., and Waugh K. C., "Synthesis of methanol", Appl. Catal., 36, 1-65, (1988) https://doi.org/10.1016/S0166-9834(00)80103-7
  16. Callaghan C. A., "Kinetics and catalysis of the water-gas-shift reaction: A microkinetic and graph theoretic approach", Ph. D. thesis, Worcester Polytechnic Institute, (2006)