• Title/Summary/Keyword: cell-based simulation model

Search Result 280, Processing Time 0.028 seconds

The Traffic Control Mechanisms and Performance Analysis of Multimedia Synchronization Cell (멀티미디어 동기셀의 트래픽 제어 기법 및 성능 분석)

  • Jeon, Byeong-Ho;Kim, Tae-Gyun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.2
    • /
    • pp.305-314
    • /
    • 1996
  • In the paper, we divide the ATM cells generated by multimedia systems that want to transmit multimedia informations over B-ISDN into two categories:i)a media cell with a media information and ii) a synchronization cell with a synchronization information. We induce a media cell loss equation and a synchroni- zation cell loss equation based on probability distribution functions with on-off source as an input traffic model. In order to meet the requirements of real-time and integrity of multimedia informations, multimedia synchronization cells should provide the delay-sensitive and the loss-sensitive requirements. A traffic control mechanism needs to satisfy above requirements. According to the performance evaluation by a traffic control model simulation, we describe both spatial priority for minimizing the synchronization cell loss and temporal priority for reducing the synchronization cell delay must be applied simultaneously.

  • PDF

Thermal Performance Evaluation of a Test Cell Thru Short Term Measurements (TEST CELL에서 단기측정에 의한 열성능 평가)

  • Jeon, M.S.;Yoon, H.K.;Chun, W.G.;Jeon, H.S.
    • Solar Energy
    • /
    • v.10 no.2
    • /
    • pp.10-17
    • /
    • 1990
  • Short-term tests were conducted on a house at KIER, Daejon for its thermal performance evaluation. The test procedure and data analysis were made according to the PSTAR method. Each test period was 3 days during which the building was unoccupied. The data measured with 8 channels were used to renormalize an audit based simulation model of the house. The following are the key parameters obtained in the present analysis: 1) the building loss coefficient(skin conductance plus infiltration conductance during coheating period); 2) the effective building heat capacity; and 3) the effective solar gain. An estimation of total heat required to maintain a standard level of comfort during a typical winter season is also calculated on the basis of the renormalized simulation model and typical long term weather data.

  • PDF

UAV Path Planning based on Deep Reinforcement Learning using Cell Decomposition Algorithm (셀 분해 알고리즘을 활용한 심층 강화학습 기반 무인 항공기 경로 계획)

  • Kyoung-Hun Kim;Byungsun Hwang;Joonho Seon;Soo-Hyun Kim;Jin-Young Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.15-20
    • /
    • 2024
  • Path planning for unmanned aerial vehicles (UAV) is crucial in avoiding collisions with obstacles in complex environments that include both static and dynamic obstacles. Path planning algorithms like RRT and A* are effectively handle static obstacle avoidance but have limitations with increasing computational complexity in high-dimensional environments. Reinforcement learning-based algorithms can accommodate complex environments, but like traditional path planning algorithms, they struggle with training complexity and convergence in higher-dimensional environment. In this paper, we proposed a reinforcement learning model utilizing a cell decomposition algorithm. The proposed model reduces the complexity of the environment by decomposing the learning environment in detail, and improves the obstacle avoidance performance by establishing the valid action of the agent. This solves the exploration problem of reinforcement learning and improves the convergence of learning. Simulation results show that the proposed model improves learning speed and efficient path planning compared to reinforcement learning models in general environments.

Simulation of Dynamic Behavior of Glucose- and Tryptophan-Grown Escherichia coli Using Constraint-Based Metabolic Models with a Hierarchical Regulatory Network

  • Lee Sung-Gun;Kim Yu-Jin;Han Sang-Il;Oh You-Kwan;Park Sung-Hoon;Kim Young-Han;Hwang Kyu-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.993-998
    • /
    • 2006
  • We earlier suggested a hierarchical regulatory network using defined modeling symbols and weights in order to improve the flux balance analysis (FBA) with regulatory events that were represented by if-then rules and Boolean logic. In the present study, the simulation results of the models, which were developed and improved from the previou model by incorporating a hierarchical regulatory network into the FBA, were compared with the experimental outcome of an aerobic batch growth of E. coli on glucose and tryptophan. From the experimental result, a diauxic growth curve was observed, reflecting growth resumption, when tryptophan was used as an alternativee after the supply of glucose was exhausted. The model parameters, the initial concentration of substrates (0.92 mM glucose and 1 mM tryptophan), cell density (0.0086 g biomass/1), the maximal uptake rates of substrates (5.4 mmol glucose/g DCW h and 1.32 mmol tryptophan/g DCW h), and lag time (0.32 h) were derived from the experimental data for more accurate prediction. The simulation results agreed with the experimental outcome of the temporal profiles of cell density and glucose, and tryptophan concentrations.

Low Frequency Current Ripple Mitigation of Two Stage Three-Phase PEMFC Generation Systems

  • Deng, Huiwen;Li, Qi;Liu, Zhixiang;Li, Lun;Chen, Weirong
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2243-2257
    • /
    • 2016
  • This paper presents a two stage three-phase proton exchange membrane fuel cell (PEMFC) generation system. When the system is connected to a three-phase load, it is very sensitive to the characteristics and type of the load. Especially unbalanced three-phase loads, which result in a pulsating power that is twice the output frequency at the inverter output, and cause the dc-link to generate low frequency ripples. This penetrates to the fuel cell side through the front-end dc-dc converter, which makes the fuel cell work in an unsafe condition and degrades its lifespan. In this paper, the generation and propagation mechanism of low frequency ripple is analyzed and its impact on fuel cells is presented based on the PEMFC output characteristics model. Then a novel method to evaluate low frequency current ripple control capability is investigated. Moreover, a control scheme with bandpass filter inserted into the current feed-forward path, and ripple duty ratio compensation based on current mode control with notch filter is also proposed to achieve low frequency ripple suppression and dynamic characteristics improvement during load transients. Finally, different control methods are verified and compared by simulation and experimental results.

Changes in the Low Latitude Atmospheric Circulation at the End of the 21st Century Simulated by CMIP5 Models under Global Warming (CMIP5 모델에서 모의되는 지구온난화에 따른 21세기 말 저위도 대기 순환의 변화)

  • Jung, Yoo-Rim;Choi, Da-Hee;Baek, Hee-Jeong;Cho, Chunho
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.377-387
    • /
    • 2013
  • Projections of changes in the low latitude atmospheric circulation under global warming are investigated using the results of the CMIP5 ensemble mean. For this purpose, 30-yr periods for the present day (1971~2000) and the end of the $21^{st}$ century (2071~2100) according to the RCP emission scenarios are compared. The wintertime subtropical jet is projected to strengthen on the upper side of the jet due to increase in meridional temperature gradient induced by warming in the tropical upper-troposphere and cooling in the stratosphere except for the RCP2.6. It is also found that a strengthening of the upper side of the wintertime subtropical jet in the RCP2.6 due to tropical upper-tropospheric warmings. Model-based projection shows a weakening of the mean intensity of the Hadley cell, an upward shift of cell, and poleward shift of the Hadley circulation for the winter cell in both hemispheres. A weakening of the Walker circulation, which is one of the most robust atmospheric responses to global warming, is also projected. These results are consistent with findings in the previous studies based on CMIP3 data sets. A weakening of the Walker circulation is accompanied with decrease (increase) in precipitation over the Indo-Pacific warm pool region (the equatorial central and east Pacific). In addition, model simulation shows a decrease in precipitation over subtropical regions where the descending branch of the winter Hadley cell in both hemispheres is strengthened.

Low Reverse Saturation Current Density of Amorphous Silicon Solar Cell Due to Reduced Thickness of Active Layer

  • Iftiquar, S M;Yi, Junsin
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.939-942
    • /
    • 2016
  • One of the most important characteristic curves of a solar cell is its current density-voltage (J-V) curve under AM1.5G insolation. Solar cell can be considered as a semiconductor diode, so a diode equivalent model was used to estimate its parameters from the J-V curve by numerical simulation. Active layer plays an important role in operation of a solar cell. We investigated the effect thicknesses and defect densities (Nd) of the active layer on the J-V curve. When the active layer thickness was varied (for Nd = 8×1017 cm-3) from 800 nm to 100 nm, the reverse saturation current density (Jo) changed from 3.56×10-5 A/cm2 to 9.62×10-11 A/cm2 and its ideality factor (n) changed from 5.28 to 2.02. For a reduced defect density (Nd = 4×1015 cm-3), the n remained within 1.45≤n≤1.92 for the same thickness range. A small increase in shunt resistance and almost no change in series resistance were observed in these cells. The low reverse saturation current density (Jo = 9.62×10-11 A/cm2) and diode ideality factor (n = 2.02 or 1.45) were observed for amorphous silicon based solar cell with 100 nm thick active layer.

VLSI Implementation of Forward Error Control Technique for ATM Networks

  • Padmavathi, G.;Amutha, R.;Srivatsa, S.K.
    • ETRI Journal
    • /
    • v.27 no.6
    • /
    • pp.691-696
    • /
    • 2005
  • In asynchronous transfer mode (ATM) networks, fixed length cells of 53 bytes are transmitted. A cell may be discarded during transmission due to buffer overflow or a detection of errors. Cell discarding seriously degrades transmission quality. The quality degradation can be reduced by employing efficient forward error control (FEC) to recover discarded cells. In this paper, we present the design and implementation of decoding equipment for FEC in ATM networks based on a single parity check (SPC) product code using very-large-scale integration (VLSI) technology. FEC allows the destination to reconstruct missing data cells by using redundant parity cells that the source adds to each block of data cells. The functionality of the design has been tested using the Model Sim 5.7cXE Simulation Package. The design has been implemented for a $5{\times}5$ matrix of data cells in a Virtex-E XCV 3200E FG1156 device. The simulation and synthesis results show that the decoding function can be completed in 81 clock cycles with an optimum clock of 56.8 MHz. A test bench was written to study the performance of the decoder, and the results are presented.

  • PDF

Modeling of Grid-Connected Photovoltaic Generation using Matlab/Simulink (Matlab/Simulink를 이용한 계통연계형 태양광발전 모델링)

  • Seo, H.C.;Yoon, Y.M.;Kim, S.R.;Lee, S.B.
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.92-94
    • /
    • 2008
  • This paper introduces the modeling of grid-connected photovoltaic(PV) generation using Matiab/Simulink. The model is based on the equivalent circuit of the PV solar cell including the effects of solar irradiation and temperature changes. The PV arrays are modeled to be built up with the series/parallel combination of PV solar cell and are connected to the distribution system via an inverter. The simulation results show that the typical characteristics and outputs of the PV arrays are accurate.

  • PDF

D-CRLH Based Band Rejection Filter using a Concavo-Convex Coupled CPW Transmission Line

  • Seo, Soo-Duk;Cho, Hak-Rae;Yang, Doo-Yeong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.463-469
    • /
    • 2016
  • In this paper, the use of a dual composite right/left-handed coplanar waveguide (CPW) transmission line is proposed for the design of a band rejection filter. The notch property of the filter is achieved by combining the convex signal line with the shorted concave meander line, and the equivalent circuit model is extracted from the geometry of the unit cell for organizing the band rejection property. Then the equivalent parameters of the unit cell are analyzed to identify those behaviors. And the dispersion characteristics and energy distributions are simulated. In the end, the band rejection filter is manufactured by cascading two proposed unit cells. We show that the measurement result for the resonant frequency demonstrates good agreement with the simulation result and the band rejection filter provides a rejection performance of 17.5 dB at the stopband frequency ranging from 869 MHz to 894 MHz.