• Title/Summary/Keyword: cell yield

Search Result 1,256, Processing Time 0.031 seconds

Effects of transport stress on physiological responses and milk production in lactating dairy cows

  • Hong, Heeok;Lee, Eunchae;Lee, In Hyung;Lee, Sang-Rak
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.3
    • /
    • pp.442-451
    • /
    • 2019
  • Objective: This study was conducted to investigate the effect of transport stress on physiological and hematological responses and milk performance in lactating dairy cows. Methods: Ten lactating dairy cows were randomly divided into 2 groups. The treatment group (TG) was transported 200 km for 4 h by truck, and the control group (NTG) was restrained by stanchion for 4 h in Konkuk University farm. Blood and milk samples were collected at 24 h pre-transport; 1, 2, and 4 h during transport; and 2, 24, and 48 h post-transport. Milk yields were measured at 24 h pre-transport, 0 h during transport, and 24, 48, and 72 h post-transport. Results: Leukocyte, neutrophil, and monocyte numbers in the TG were significantly higher than those of the NTG at each experimental time point. Lymphocyte numbers in the TG were significantly (p<0.05) higher than those of the NTG at 48 h post-transport. Additionally, the neutrophil:lymphocyte ratio of the TG was 45% and 46% higher than that of the NTG at 4 h during transport and 2 h post-transport, respectively. There were no significant differences in erythrocyte numbers, hemoglobin concentrations, platelet numbers, and hematocrit percentages between two groups. Cortisol levels in the TG were significantly (p<0.05) higher than those in the NTG. Milk yields in the TG were lower than those in the NTG. The somatic cell count (SCC) of the TG was significantly (p<0.05) higher than that of the NTG at 1 and 2 h during transport; that of the TG increased dramatically at 1 h during transport and gradually decreased subsequently. Conclusion: Transport stress increased blood parameters including leucocyte, neutrophil, and monocyte numbers by increased cortisol levels, but did not affect erythrocytes, hemoglobin and hematocrit levels. Additionally, transport resulted in a decrease in milk yield and reduced milk quality owing to an increase in milk SCC.

Effect of fermented spent instant coffee grounds on milk productivity and blood profiles of lactating dairy cows

  • Choi, Yongjun;Rim, Jongsu;Lee, Honggu;Kwon, Hyunchul;Na, Youngjun;Lee, Sangrak
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.1007-1014
    • /
    • 2019
  • Objective: This study was conducted to evaluate the fermentation characteristics under low mesophilic temperature of spent instant coffee ground (SICG) and to estimate the effect of fermented SICG (FSICG) as alternative feed ingredient on milk productivity of dairy cows. Methods: In the fermentation trial, fermentation of SICG was performed to investigate changes in characteristics using the microbial mixture (Lactobacillus plantarum, Saccharomyces cerevisiae, and Bacillus subtilis = 1:1:1) for 21 days at $20^{\circ}C$ under anaerobic conditions. Molasses was added at 5% of dry mass. In the animal trial, eighteen Holstein Friesian cows were used to evaluate the nutritive value of the FSICG which was fermented for 14 days under the same condition as the fermentation trial. Results: In the fermentation trial, the dry matter (DM) and organic matter content linearly decreased with fermentation time (p<0.001 and p = 0.008, respectively). The acid detergent insoluble nitrogen content linearly decreased with fermentation time (p = 0.037). The microorganism counts linearly increased for Lactobacillus plantarum, Saccharomyces cerevisiae, and Bacillus subtilis across fermentation time (p<0.001). In the animal trial, the DM intake of the control and FSICG treatment were not significantly different, as were milk yield, 4% fat corrected milk, fat-protein corrected milk, and feed to milk conversion content. Fat, protein, lactose, non-fat solids, milk urea nitrogen, and somatic cell counts were also not significantly different in milk composition between treatments. Conclusion: FSICG should be considered a sufficient substitute for cottonseed as a feed component, and 5% DM of a dietary FSICG level was appropriate for dairy cow diets.

Large-Scale Production of Cronobacter sakazakii Bacteriophage Φ CS01 in Bioreactors via a Two-Stage Self-Cycling Process

  • Lee, Jin-Sun;Kim, Gyeong-Hwuii;Kim, Jaegon;Lim, Tae-Hyun;Yoon, Yong Won;Yoon, Sung-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.10
    • /
    • pp.1430-1437
    • /
    • 2021
  • Cronobacter sakazakii is an opportunistic pathogenic bacterium found in powdered infant formula and is fatal to neonates. Antibiotic resistance has emerged owing to overuse of antibiotics. Therefore, demand for high-yield bacteriophages as an alternative to antibiotics has increased. Accordingly, we developed a modified mass-production method for bacteriophages by introducing a two-stage self-cycling (TSSC) process, which yielded high-concentration bacteriophage solutions by replenishing the nutritional medium at the beginning of each process, without additional challenge. pH of the culture medium was monitored in real-time during C. sakazakii growth and bacteriophage CS01 propagation, and the changes in various parameters were assessed. The pH of the culture medium dropped to 5.8 when the host bacteria reached the early log phase (OD540 = 0.3). After challenge, it decreased to 4.65 and then recovered to 4.94; therefore, we set the optimum pH to challenge the phage at 5.8 and that to harvest the phage at 4.94. We then compared phage production during the TSSC process in jar-type bioreactors and the batch culture process in shaker flasks. In the same volume of LB medium, the concentration of the phage titer solution obtained with the TSSC process was 24 times higher than that obtained with the batch culture process. Moreover, we stably obtained high concentrations of bacteriophage solutions for three cycles with the TSSC process. Overall, this modified TSSC process could simplify large-scale production of bacteriophage CS01 and reduce the unit cost of phage titer solution. These results could contribute to curing infants infected with antibiotic-resistant C. sakazakii.

Mitophagy Improves Ethanol Tolerance in Yeast: Regulation by Mitochondrial Reactive Oxygen Species in Saccharomyces cerevisiae

  • Jing, Hongjuan;Liu, Huanhuan;Lu, Zhang;Cui, liuqing;Tan, Xiaorong
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.12
    • /
    • pp.1876-1884
    • /
    • 2020
  • Ethanol often accumulates during the process of wine fermentation, and mitophagy has critical role in ethanol output. However, the relationship between mitophagy and ethanol stress is still unclear. In this study, the expression of ATG11 and ATG32 genes exposed to ethanol stress was accessed by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). The result indicated that ethanol stress induced expression of the ATG11 and ATG32 genes. The colony sizes and the alcohol yield of atg11 and atg32 were also smaller and lower than those of wild type strain under ethanol whereas the mortality of mutants is higher. Furthermore, compared with wild type, the membrane integrity and the mitochondrial membrane potential of atg11 and atg32 exhibited greater damage following ethanol stress. In addition, a greater proportion of mutant cells were arrested at the G1/G0 cell cycle. There was more aggregation of peroxide hydrogen (H2O2) and superoxide anion (O2•-) in mutants. These changes in H2O2 and O2•- in yeasts were altered by reductants or inhibitors of scavenging enzyme by means of regulating the expression of ATG11 and ATG32 genes. Inhibitors of the mitochondrial electron transport chain (mtETC) also increased production of H2O2 and O2•- by enhancing expression of the ATG11 and ATG32 genes. Further results showed that activator or inhibitor of autophagy also activated or inhibited mitophagy by altering production of H2O2 and O2•. Therefore, ethanol stress induces mitophagy which improves yeast the tolerance to ethanol and the level of mitophagy during ethanol stress is regulated by ROS derived from mtETC.

Ultrasound-Assisted Micellar Extraction for Paclitaxel Purification from Taxus chinensis (Taxus chinensis 유래 파클리탁셀 정제를 위한 초음파를 이용한 마이셀 추출)

  • Park, Ji-Min;Kim, Jin-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.106-111
    • /
    • 2021
  • In this study, an ultrasound-assisted micellar extraction process was developed to efficiently purify the anticancer substance paclitaxel from the plant cell Taxus chinensis. The problem of many extraction steps and long phase separation time in the traditional micellar process could be dramatically improved. The highest paclitaxel yield (~96%, extracted twice) was obtained at 180 W of ultrasonic power and 1.5 h of ultrasonic irradiation time, which was 24.7% higher than that of the traditional method. In addition, the partition coefficient (K) showed a maximum value (24.0) at 180 W of ultrasonic power and 1.5 h of irradiation time. There was no significant difference in the purity of paclitaxel, and the purity of initial paclitaxel (6.81%) increased to 22.0% after purification. Compared to the traditional method, the phase separation time of the back extraction decreased by 40.7-56.2% (ultrasonic power 80 W), 46.3-67.6% (ultrasonic power 180 W), and 51.9-67.6% (ultrasonic power 250 W), respectively. The phase separation time decreased as the ultrasonic power (80-250 W) and irradiation time (0.5-2.5 h) increased.

Carbon Source Affects Synthesis, Structures, and Activities of Mycelial Polysaccharides from Medicinal Fungus Inonotus obliquus

  • He, Huihui;Li, Yingying;Fang, Mingyue;Li, Tiantian;Liang, Yunxiang;Mei, Yuxia
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.6
    • /
    • pp.855-866
    • /
    • 2021
  • The effects of various carbon sources on mycelial growth and polysaccharide synthesis of the medicinal fungus Inonotus obliquus in liquid fermentation were investigated. After 12-d fermentation, mycelial biomass, polysaccharide yield, and polysaccharide content were significantly higher in Glc+Lac group (glucose and lactose used as combined carbon source) than in other groups. Crude polysaccharides (CIOPs) and the derivative neutral polysaccharides (NIOPs) were obtained from mycelia fermented using Glc, fructose (Fru), Lac, or Glc+Lac as carbon source. Molecular weights of four NIOPs (termed as NIOPG, NIOPF, NIOPL, and NIOPGL) were respectively 780.90, 1105.00, 25.32, and 10.28 kDa. Monosaccharide composition analyses revealed that NIOPs were composed of Glc, Man, and Gal at different molar ratios. The NIOPs were classified as α-type heteropolysaccharides with 1→2, 1→3, 1→4, 1→6 linkages in differing proportions. In in vitro cell proliferation assays, viability of RAW264.7 macrophages was more strongly enhanced by NIOPL or NIOPGL than by NIOPG or NIOPF, and proliferation of HeLa or S180 tumor cells was more strongly inhibited by NIOPG or NIOPGL than by NIOPF or NIOPL, indicating that immune-enhancing and anti-tumor activities of NIOPs were substantially affected by carbon source. qRT-PCR analysis revealed that expression levels of phosphoglucose isomerase (PGI) and UDP-Glc 4-epimerase (UGE), two key genes involved in polysaccharide synthesis, varied depending on carbon source. Our findings, taken together, clearly demonstrate that carbon source plays an essential role in determining structure and activities of I. obliquus polysaccharides by regulating expression of key genes in polysaccharide biosynthetic pathway.

Photoluminescence Characterization of Halide Perovskite Films according to Measuring Conditions (페로브스카이트 할로겐화물 박막의 발광 측정 조건에 따른 특성 분석)

  • Cho, Hyeonah;Lee, Seungmin;Noh, Jun Hong
    • Korean Journal of Materials Research
    • /
    • v.32 no.10
    • /
    • pp.419-424
    • /
    • 2022
  • Halide perovskite solar cells (PSCs) have improved rapidly over the past few years, and research on the optoelectrical properties of halide perovskite thin films has grown as well. Among the characterization techniques, photoluminescence (PL), a method of collecting emitted photons to evaluate the properties of materials, is widely applied to evaluate improvements in the performance of PSCs. However, since only photons emitted from the film in the escape cone are included, the photons collected in PL are a small fraction of the total photons emitted from the film. Unlike PSCs power conversion efficiency, PL measuring methods have not been standardized, and have been evaluated in a variety of ways. Thus, an in-depth study is needed of the methods used to evaluate materials using PL spectra. In this study, we examined the PL spectra of the perovskite light harvesting layer with different measurement protocols and analyzed the features. As the incident angle changed, different spectra were observed, indicating that the PL emission spectrum can depend on the measuring method, not the material. We found the intensity and energy of the PL spectra changes were due to the path of the emitted photons. Also, we found that the PL of halide perovskite thin films generally contains limited information. To solve this problem, the emitted photons should be collected using an integrating sphere. The results of this study suggest that the emission spectrum of halide perovskite films should be carefully interpreted in accordance with PL measuring method, since PL data is mostly affected by the method.

Antioxidant, Black Hair, and Hair Growth Effect of Mixed Extracts of Nardostachys jatamansi, Ocimum basilicum and Crocus sativus

  • Mi Jeong Choi;Yu Ri Kim
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.1
    • /
    • pp.43-52
    • /
    • 2023
  • The purpose of this study is to confirm the antioxidant, black hair, and hair growth effects of the N. jatamansi, O. basilicum, and C. sativus mixed extracts that pharmacological efficacy has been verified. Accordingly, four samples (NOC-1 to-4) produced under different extraction conditions were prepared and the results are as follows. First, all samples showed an increase in antioxidant content in a concentration-dependent manner from the results of antioxidant efficacy. In particular, NOC-4 extracted by steaming and ultrasonic methods showed the highest antioxidant effect among the four samples. As a result of analysis of the amount of melanin production in mouse melanoma cells, NOC-4 with concentration of 500 ㎍/ml showed higher melanin production compared to the control group, so the black hair efficacy was the best. Also, in the hair growth test results, it was found that the hair growth was the best at 0.94 ± 0.10 mm at experimental group orally administered with 500 mg/kg of NOC-4. In addition, as a result of cytotoxicity analysis in mouse melanoma cells, the safety of samples was demonstrated by maintaining cell viability of 95% or more at all concentrations. These results suggest that the steaming and ultrasonic extraction method increased the extraction yield of active ingredients for antioxidant, melanin, and hair generation, thereby affecting physiological activity. Based on these results, if the steaming and ultrasonic extraction methods are applied to the mixed extraction of N. jatamansi, O. basilicum, and C. sativus, it is judged that the practical potential as a natural material for black hair and hair growth agents will increase.

Effects of Light Quality of a Light-Emitting Diode (LED) on Carbohydrate, Protein, and Lipid Contents of Tetraselmis suecica and T. tetrathele (발광다이오드(LED) 파장에 따른 Tetraselmis suecica와 T. tetrathele의 탄수화물, 단백질 및 지질 함량에 미치는 영향)

  • Kyong Ha Han;Seok Jin Oh
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.1
    • /
    • pp.36-43
    • /
    • 2023
  • To establish a culture system with enhanced cellular nutrition, we investigated the effects of light quality (blue, 450 nm; yellow, 590 nm; and red, 630 nm) of a light-emitting diode (LED) on the biochemical composition of Tetraselmis suecica and T. tetrathele. The protein content of both species was higher (42-69%) than the content of other biochemical substances under all wavelengths. Carbohydrate, protein, and lipid contents were higher under the yellow wavelength, which showed a low growth rate, than those under other wavelengths. The contents of all biochemical substances were low under the red wavelength, which showed a high growth rate. These results indicated that protein synthesis occurs in response to decreased cell division rate, while lipid and carbohydrate synthesis occurs owing to altered chemical composition and enzymatic activity. Therefore, we suggested a two-phase LED culture system, which emitted red LED during the early-middle exponential phase and yellow LED during the late exponential and stationary phases, to increase the yield of useful biochemical substances of T. suecica and T. tetrathele.

Nitrate enhances the secondary growth of storage roots in Panax ginseng

  • Kyoung Rok Geem ;Jaewook Kim ;Wonsil Bae ;Moo-Geun Jee ;Jin Yu ;Inbae Jang;Dong-Yun Lee ;Chang Pyo Hong ;Donghwan Shim;Hojin Ryu
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.469-478
    • /
    • 2023
  • Background: Nitrogen (N) is an essential macronutrient for plant growth and development. To support agricultural production and enhance crop yield, two major N sources, nitrate and ammonium, are applied as fertilizers to the soil. Although many studies have been conducted on N uptake and signal transduction, the molecular genetic mechanisms of N-mediated physiological roles, such as the secondary growth of storage roots, remain largely unknown. Methods: One-year-old P. ginseng seedlings treated with KNO3 were analyzed for the secondary growth of storage roots. The histological paraffin sections were subjected to bright and polarized light microscopic analysis. Genome-wide RNA-seq and network analysis were carried out to dissect the molecular mechanism of nitrate-mediated promotion of ginseng storage root thickening. Results: Here, we report the positive effects of nitrate on storage root secondary growth in Panax ginseng. Exogenous nitrate supply to ginseng seedlings significantly increased the root secondary growth. Histological analysis indicated that the enhancement of root secondary growth could be attributed to the increase in cambium stem cell activity and the subsequent differentiation of cambium-derived storage parenchymal cells. RNA-seq and gene set enrichment analysis (GSEA) revealed that the formation of a transcriptional network comprising auxin, brassinosteroid (BR)-, ethylene-, and jasmonic acid (JA)-related genes mainly contributed to the secondary growth of ginseng storage roots. In addition, increased proliferation of cambium stem cells by a N-rich source inhibited the accumulation of starch granules in storage parenchymal cells. Conclusion: Thus, through the integration of bioinformatic and histological tissue analyses, we demonstrate that nitrate assimilation and signaling pathways are integrated into key biological processes that promote the secondary growth of P. ginseng storage roots.