• 제목/요약/키워드: cell wall peptidoglycan

검색결과 43건 처리시간 0.02초

Characterization of the Cloned Staphylococcal Peptidoglycan Hydrolase Gene Product

  • Lee, Yoon-Ik
    • BMB Reports
    • /
    • 제28권5호
    • /
    • pp.443-450
    • /
    • 1995
  • Cloned staphylococcal peptidoglycan hydrolase was used in determining the physiological characteristics of peptidoglycan hydrolase. This enzyme hydrolyzed the bacterial cell walls and released the N-terminal alanine, but not the reducing groups. This cloned gene product was localized in the cytoplasm of transformed Escherichia coli. Activity gels indicated the enzyme had an Mr of about 54,000, which was consistent with the deduced Mr from sequencing of the cloned gene. The activity bound to CM-cellulose but not DEAE-cellulose resin, indicating it as a basic protein. Enhanced enzyme activity in a low concentration of cations, and inhibited enzyme activity in a solution with dissolved phospholipids, suggested that the activity and the availability of this basic protein may be regulated between negatively charged and positively charged cellular molecules. The activity against boiled crude cell wall was much greater than against purifed cell wall, suggesting protein associated with crude cell wall may aid in the binding of the peptidoglycan hydrolase The cloned peptidoglycan hydrolase showed positive activity on whole cells of some lysostaphin-resistant coagulase-negative staphylococci. The cloned enzyme may be an alternative for lysostaphin for lysis of staphylococci.

  • PDF

Purification and Characterization of a Bacteriolytic Enzyme from Alkalophilic Bacillus sp.

  • Jung, Myeong-Ho;Kang, In-Soo;Bai, Dong-Hoon;Yu, Ju-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제1권2호
    • /
    • pp.102-110
    • /
    • 1991
  • Alkalophilic Bacillus sp. YJ-451, which was isolated from soil at several area in Korea, produced a novel type of bacteriolytic enzyme (cell wall peptidoglycan hydrolase) extracellulary. The cell wall hydrolytic activity was identified as a clear zone on sodium dodecyl sulfate polyacrylamide gel electrophoresis containing 0.2% (w/v) cell wall of Bacillus sp. as substrate. This enzyme was successively purified 66 fold with 3.2% yield in culture broth by ammonium sulfate precipitation, CM-cellulose column chromatography, and gel filtration, followed by hydroxylapatite column chromatography. The molecular weight of the purified enzyme was estimated to be 27,000 by sodium dodecyl sulfate polyacrylamide gel electrophoresis and gel filtration column chromatography. The optimum pH and temperature for the activity of the enzyme were pH 10.0 and $50^{\circ}C$, respectively. The enzyme was stable between pH 5.0 and 10.0 and up to $40^{\circ}C$. Among the microorganisms used in this experiment the enzyme was active against most of gram negative strains and the genus Bacillus such as B. megaterium, B. licheniformis, B. circulans, B. pumilus, B. macerans, B. polymyxa. The release of dinitrophenylglutamic acid but not reducing group from cell wall peptidoglycan digested by the enzyme suggested that the enzyme is a kind of peptidase which hydrolyzes the peptide bond at the amino group of D-glutamic acid in the peptidoglycan.

  • PDF

A Comparative Analysis of Monofunctional Biosynthetic Peptidoglycan Transglycosylase (MBPT) from Pathogenic and Non-pathogenic Bacteria

  • Baker, Andrew T.;Takahashi, Natsumi;Chandra, Sathees B.
    • Genomics & Informatics
    • /
    • 제8권2호
    • /
    • pp.63-69
    • /
    • 2010
  • Monofunctional biosynthetic peptidoglycan transglycosylase (MBPT) catalyzes the formation of the glycan chain in bacterial cell walls from peptidoglycan subunits: N-acetylglucosamine (NAG) and acetylmuramic acid (NAM). Bifunctional glycosyltransferases such as the penicillin binding protein (PBP) have peptidoglycan glycosyltransferase (PGT) on their C terminal end which links together the peptidoglycan subunits while transpeptidase (TP) on the N terminal end cross-links the peptide moieties on the NAM monosaccharide of the peptide subunits to create the bacterial cell wall. The singular function of MBPT resembles the C terminal end of PBP as it too contains and utilizes a similar PGT domain. In this article we analyzed the infectious and non infectious protein sequences of MBPT from 31 different strains of bacteria using a variety of bioinformatic tools. Motif analysis, dot-plot comparison, and phylogenetic analysis identified a number of significant differences between infectious and non-infectious protein sequences. In this paper we have made an attempt to explain, analyze and discuss these differences from an evolutionary perspective. The results of our sequence analysis may open the door for utilizing MBPT as a new target to fight a variety of infectious bacteria.

Purification and Characterization of Cell Wall Hydrolase from Alkalophilic Bacillus mutanolyticus YU5215

  • 옥승호;남승우;김진만;유윤정;배동훈
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권6호
    • /
    • pp.1142-1149
    • /
    • 2004
  • Streptococcus mutans has the capacity of inducing dental caries. Thus, to develop a novel way of preventing dental caries, a cell wall hydrolase-producing strain was isolated and its characteristics were investigated. Among 200 alkalophilic strains isolated from soil, 8 strains exhibited lytic activities against Streptococcus mutans. However, strain YU5215 with the highest cell wall hydrolase activity was selected for further study. Strain YU5215 was identified as a novel strain of Bacillus based on analyzing its 16S rDNA sequence and Bergey's Manual of Systematic Bacteriology, and thus designated as Bacillus mutanolyticus YU5215. The optimal conditions for the production of the cell wall hydrolase from Bacillus mutanolyticus YU5215 consisted of glucose ($0.8\%$), yeast extract ($1.2\%$), polypeptone ($0.5\%$), $K_{2}HPO_{4}\;(0.1\%$), $MgSO_{4}{\cdot}7H_{2}O$ ($0.02\%$), and $Na_{2}CO_{3}\;(1.0\%$) at pH 10.0. Bacillus mutanolyticus YU5215 was cultured at 30^{circ}C for 72 h to produce the cell wall hydrolase, which was then purified by acetone precipitation and CM-agarose column chromatography. The molecular weight of the lytic enzyme was determined as 22,700 Da by SDS-PAGE. When the cell wall peptidoglycan of Streptococcus mutans was digested with the lytic enzyme, no increase in the reducing sugars was observed, while the free amino acids increased, indicating that the lytic enzyme had an endopeptidase-like property. The amino terminus of the cell wall peptidoglycan digested by the lytic enzyme was determined as a glutamic acid, while the lytic site of the lytic enzyme in the Streptococcus mutans peptidoglycan was identified as the peptide linkage of L-Ala and D-Glu.

Inactivation of the Wall-Associated De-N-acetylase (PgdA) of Listeria monocytogenes Results in Greater Susceptibility of the Cells to Induced Autolysis

  • Popowska, Magdalena;Kusio, Monika;Szymanska, Paulina;Markiewicz, Zdzislaw
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권9호
    • /
    • pp.932-945
    • /
    • 2009
  • Several species of Gram-positive bacteria have cell wall peptidoglycan (syn. murein) in which not all of the sugar moieties are N-acetylated. This has recently been shown to be a secondary effect, caused by the action of a peptidoglycan N-acetylglucosamine deacetylase. We have found that the opportunistic pathogen Listeria monocytogenes is unusual in having three enzymes with such activity, two of which remain in the cytoplasm. Here, we examine the enzyme (PgdA) that crosses the cytoplasmic membrane and is localized in the cell wall. We purified a hexa-His-tagged form of PgdA to study its activity and constructed a mutant devoid of functional Lmo0415 (PgdA) protein. L. monocytogenes PgdA protein exhibited peptidoglycan N-acetylglucosamine deacetylase activity with natural substrates (peptidoglycan) from both L. monocytogenes and Escherichia coli as well as the peptidoglycan sugar chain component N-acetylglucosamine, but not with N-acetylmuramic acid. As was reported recently [6], inactivation of the structural gene was not lethal for L. monocytogenes nor did it affect growth rate or morphology of the cells. However, the pgdA mutant was more prone to autolysis induced by such agents as Triton X-100 and EDTA, and is more susceptible to the cationic antimicrobial peptides (CAMP) lysozyme and mutanolysin, using either peptidoglycan muramidases or autolysis-inducing agents. The pgdA mutant was also slightly more susceptible than the wild-type strain to the action of certain beta-lactam antibiotics. Our results indicate that protein PgdA plays a protective physiological role for listerial cells.

Innate immune response in insects: recognition of bacterial peptidoglycan and amplification of its recognition signal

  • Kim, Chan-Hee;Park, Ji-Won;Ha, Nam-Chul;Kang, Hee-Jung;Lee, Bok-Luel
    • BMB Reports
    • /
    • 제41권2호
    • /
    • pp.93-101
    • /
    • 2008
  • The major cell wall components of bacteria are lipopolysaccharide, peptidoglycan, and teichoic acid. These molecules are known to trigger strong innate immune responses in the host. The molecular mechanisms by which the host recognizes the peptidoglycan of Gram-positive bacteria and amplifies this peptidoglycan recognition signals to mount an immune response remain largely unclear. Recent, elegant genetic and biochemical studies are revealing details of the molecular recognition mechanism and the signalling pathways triggered by bacterial peptidoglycan. Here we review recent progress in elucidating the molecular details of peptidoglycan recognition and its signalling pathways in insects. We also attempt to evaluate the importance of this issue for understanding innate immunity.

Bacillus sp.로부터 분리 정제한 Cell Wall 분해효소의 반응특성 (Moce of Action of the Purified Cell Wall Lytic Enzyme from Bacillus sp.)

  • 김태호;신우창;이동선;홍순덕
    • 한국미생물·생명공학회지
    • /
    • 제23권6호
    • /
    • pp.671-677
    • /
    • 1995
  • An extracellular enzyme showing lytic activity on E. coli peptidoglycan had been isolated from Bacillus sp. BL-29. The lytic enzyme was purified to homogeneity by ion-exchange chromatography and gel filtration, with a recovery of 5%. The enzyme was monomeric and had an estimated molecular weight of 31,000 Da. The mode of action of the purified enzyme was also investigated. When the purified lytic enzyme was incubated with cell wall peptidoglycan, N-terminal amino groups were released without the release of reducing groups. The N-terminal amino acid released was identified as dinitrophenylalanine (DNP-alanine) by analysis of terminal amino acid by dinitrophenylation method. This result suggests that the lytic enzyme should be a kind of N-acetylmura-myl-L-alanine amidase.

  • PDF

Streptomyces sp. YJB-599가 생산하는 Genistein의 분리 및 정제

  • 함병권;배동훈;유주현
    • 한국미생물·생명공학회지
    • /
    • 제24권3호
    • /
    • pp.311-315
    • /
    • 1996
  • A cytotoxic material was produced by strain No. 5-99 which was isolated from soil. Analyzing the cell wall components, LL-diaminopimelic acid was identified. From the existance of glycine in the cell wall, this strain was identified to Streptomyces sp. which has cell wall chemotype I and peptidoglycan type A3 connected by glycine. So, we named this strain to Streptomyces sp. YJB-599. The Active material was purified through solvent extraction, silica gel column chromatography and crystallized to needle-shaped white -crystal. Analyzing the structure of this crytal by instrumental analysis and database, it was determined to genistein.

  • PDF

Immunostimulation Effects of Cell Wall Components Isolated from Lactobacillus plantarum

  • TAE BOO CHOE;KANG, KWAN YUEB;SUNG HO PARK
    • Journal of Microbiology and Biotechnology
    • /
    • 제4권3호
    • /
    • pp.195-199
    • /
    • 1994
  • Immunostimulation effects of the cell wall components isolated from Lactobacillus plantarum were investigated by studying the macrophage s tumorcidal activity, splenocyte proliferation, anticomplementary activity and the inhibition of peritoneal tumor cell growth measured with ICR mice inoculated with sarcoma 180. The immunopotentiating cell wall components were a complex of peptidoglycan and exopolysaccharides. The tumorcidal activity of macrophage against Yacl and B16 tumor cells was enhanced when the cell wall components were added into the macrophage s culture medium. They also stimulated splenocytes to proliferate up to the same level as when the concanavalin A was added into the splenocyte's culture medium. The complementary activity was inhibited by 50% when the cell wall components were incubated with the sheep red blood cells treated with hemolysin and guinea pig complement. This result confirmed that the cell wall components had an antitumor effect, because the anticomplementary activity is usually accompanied by an antitumor activity at the same time. This fact was confirmed again by the inhibition of the growth of sarcoma 180 when the cell wall components were injected intraperitoneally into ICR mice inoculated with sarcoma 180. As a result, it is concluded that the cell wall components isolated from Lactobacillus plantarum had multifunctional immunostimulation effects in vitro and in vivo.

  • PDF

Isolation and Characterization of an Immunopotentiating Factor from Lactobacillus plantarum in Kimchi: Assessment of Immunostimulatory Activities

  • Lee, Jong-Hwa;Kweon, Dae-Hyuk;Lee, Seung-Cheol
    • Food Science and Biotechnology
    • /
    • 제15권6호
    • /
    • pp.877-883
    • /
    • 2006
  • The immunostimulatory activities of Lactobacillus plantarum, the major microorganism in kimchi fermentations were investigated. Five strains of L. plantarum exhibited weak immunopotentiating activity, but L. plantarum PS-21 showed as strong a mitogenic activity as Bifidobacterium adolescentis M101-4, a known positive strain. It is of interest that, L. plantarum PS-21 stimulated proliferation of Peyer's patch cells, one of the most important tissues in the gut-associated lymphoreticular system. Cell' wall fractions from L. plantarum PS-21 also showed strong mitogenic activity compared with the soluble cytoplasmic fraction. A peptidoglycan fraction (PG) extracted from the cell wall of L. plantarum PS-21 was identified as an active mitogenic component when used in murine lymph node and spleen cell test systems. PG showed dose-dependent mitogenic activity and significantly enhanced antibody production in lymph node cells when studied in vitro. The lysosomal enzyme activity of murine peritoneal macrophages was increased when analyzed following injection of PG to the host animal. Furthermore, PG enhanced the production of cytokines such ($TNF-{\alpha}$ and IL-6) in the in vitro culture of RAW 264.7 macrophage cells.