Browse > Article

Purification and Characterization of Cell Wall Hydrolase from Alkalophilic Bacillus mutanolyticus YU5215  

OHK, SEUNG-HO (Department of Oral Microbiology, and Dental Science Research Institute, Chonnam National University)
NAM, SEUNG-WOO (R&D Center, Pulmuone Co., Ltd)
KIM, JIN-MAN (Department of Biotechnology, Yosu National University)
YOO, YUN-JUNG (Department of Oral Biology, Yonsei University)
BAI, DONG-HOON (Department of Food Engineering, Dankook University)
Publication Information
Journal of Microbiology and Biotechnology / v.14, no.6, 2004 , pp. 1142-1149 More about this Journal
Abstract
Streptococcus mutans has the capacity of inducing dental caries. Thus, to develop a novel way of preventing dental caries, a cell wall hydrolase-producing strain was isolated and its characteristics were investigated. Among 200 alkalophilic strains isolated from soil, 8 strains exhibited lytic activities against Streptococcus mutans. However, strain YU5215 with the highest cell wall hydrolase activity was selected for further study. Strain YU5215 was identified as a novel strain of Bacillus based on analyzing its 16S rDNA sequence and Bergey's Manual of Systematic Bacteriology, and thus designated as Bacillus mutanolyticus YU5215. The optimal conditions for the production of the cell wall hydrolase from Bacillus mutanolyticus YU5215 consisted of glucose ($0.8\%$), yeast extract ($1.2\%$), polypeptone ($0.5\%$), $K_{2}HPO_{4}\;(0.1\%$), $MgSO_{4}{\cdot}7H_{2}O$ ($0.02\%$), and $Na_{2}CO_{3}\;(1.0\%$) at pH 10.0. Bacillus mutanolyticus YU5215 was cultured at 30^{circ}C for 72 h to produce the cell wall hydrolase, which was then purified by acetone precipitation and CM-agarose column chromatography. The molecular weight of the lytic enzyme was determined as 22,700 Da by SDS-PAGE. When the cell wall peptidoglycan of Streptococcus mutans was digested with the lytic enzyme, no increase in the reducing sugars was observed, while the free amino acids increased, indicating that the lytic enzyme had an endopeptidase-like property. The amino terminus of the cell wall peptidoglycan digested by the lytic enzyme was determined as a glutamic acid, while the lytic site of the lytic enzyme in the Streptococcus mutans peptidoglycan was identified as the peptide linkage of L-Ala and D-Glu.
Keywords
Cell wall hydrolase; Streptococcus mutans; Bacillus mutanolyticus YU5215; endopeptidase; D-glutamic acid;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
1 Fan, D. P. 1970. Cell wall binding properties of the Bacillus subtilis autolysin (5) dechaining enzyme. J. Bacteriol. 103: 488-493   PUBMED
2 Foster, J. S. 1991. Cloning, expression, sequence analysis and biochemical characterization of an autolytic amidase of Bacillus subtilis 168 trpC2. J. Gen. Microbiol. 137: 1987- 1998   DOI   PUBMED   ScienceOn
3 Fukui, K., T. Moriyama, Y. Miyake, K. Mizutani, and O. Tanaka. 1982. Purification and properties of glycosyltransferase responsible for water-insoluble glucan synthesis from Streptococcus mutans. Infect. Immun. 37: 1-9
4 Ghuysen, J. M. and R. Hakenbeck. 1994. Bacterial Cell Wall, pp. 23-38. Elsevier Science B. V., Amsterdam, The Netherlands
5 Hamada, S. and M. Torii. 1980. Interaction of glycosyltransferase from Streptococcus mutans with various glucans. J. Gen. Microbiol. 116: 51-59
6 Hobol, J. A. and H. J. Rogers. 1991. Intracellular location of the autolytic N-acetylmuramyl-L-alanine amidase in Bacillus subtilis 168 and in an autolysis-deficient mutant by immunoelectron microscopy. J. Bacteriol. 173: 961-967
7 Ohk, S. H., I. H. Yeo, Y. J. Yoo, B. K. Kim, and D. H. Bai. 2001. Cloning and expression of a yeast cell wall hydrolase gene (ycl) from alkalophilic Bacillus alcalophilus subsp. YB380. J. Microbiol. Biotechnol. 11: 508-514
8 Rogers, H. J., C. Taylor, S. Rayter, and J. B. Ward. 1984. Purification and properties of autolytic endo-$\beta$-Nacetylglucosaminidase and the N-acetylmuramyl-L-alanine amidase from Bacillus subtilis strain 168. J. Gen. Microbiol. 130: 2395-2402
9 Spinell, D. M. and R. J. Gibbons. 1974. Influence of culture medium on the glycosyltransferase and dextran-binding capacity of Streptococcus mutans. Infect. Immun. 10: 1148-1151
10 Tanzer, J. M., M. L. Freedman, R. J. Fitzgerald, and R. H. Larson. 1974. Diminished virulence of glucan synthesis-detective mutants of Streptococcus mutans. Infect. Immun. 10: 197-203
11 Yanai, A., K. Kato, T. Beppu, and K. Arima. 1976. Bacteriophage induced lytic enzyme which hydrolyzes L-alanine-D-glutamic acid peptide bond in peptidoglycan. Biochem. Biophys. Res. Commun. 68: 1146-1152
12 Yeo, I. H., S. K. Han, J. H. Yu, and D. H. Bai. 1998. Isolation of novel alkalophilic Bacillus alcalophilus subsp. YB380 and the characteristics of its yeast cell wall hydrolase. J. Microbiol. Biotechnol. 8: 501-508
13 Fukushima, K., R. Motoda, K. Takada, and T. Ikeda. 1981. Resolution of Streptococcus mutans glucosyltransferases into two components essential to water-insoluble glucan synthesis. FEBS Letters 128: 213-216
14 Jeon, E. J., I. H. Jung, K. S. Cho, E. S. Seo, D. Kim, S. J. Lee, K. H. Park, and T. W. Moon. 2003. Low cariogenecity of maltosyl-erythritol, major transglycosylation product of erythritol, by Bacillus stearothermophilus maltogenic amylase. J. Microbiol. Biotechnol. 13: 815-818
15 Yumoto, I., K. Yamazaki, T. Sawabe, K. Nakano, K. Kawasaki, Y. Ezura, and H. Shinano. 1998. Bacillus horti sp. nov., a new Gram-negative alkalophilic bacillus. Int. J. Syst. Bacteriol. 48: 565-571
16 Hayashi, K. and T. Kasumi. 1981. Purification and characterization of the lytic enzyme produced by Streptomyces rutgersensis H-46. Agric. Biol. Chem. 45: 2289-2300
17 Lee, K. H., G. S. Moon, J. Y. An, H. J. Lee, H. C. Chang, D. K. Chung, J. H. Lee, and J. H. Kim. 2002. Isolation of a nisin-producing Lactococcus lactis strain from Kimchi and characterization of its nisZ gene. J. Microbiol. Biotechnol. 12(3): 389-397
18 Hamada, S. and H. D. Slade. 1980. Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol. Rev. 44: 331-384
19 Walker, N. E. 1971. Structure of the cell wall of Bacillus stearothermophilus; mode of action of a thermophilic bacteriophage lytic enzyme. J. Bacteriol. 107: 697-703
20 Martin, J. R., F. A. Mulder, Y. Karimi-Nejad, J. van der Zwan, M. Mariani, D. Schipper, and R. Boelens. 1997. The solution structure of serine protease PB92 from Bacillus alcalophilus presents a rigid fold with a flexible substratebinding site. Structure 5(4): 521-532
21 Hakamada, Y., T. Kobayashi, J. Hitomi, S. Kawai, and S. Ito. 1994. Molecular cloning and nucleotide sequence of the gene for an alkaline protease from the alkalophilic Bacillus sp. KSM-K16. J. Ferment. Bioeng. 78(1): 105-108
22 Chaplin, M. F. and J. F. Kennedy. 1976. Magnetic, immobilised derivatives of enzymes. Carbohydr. Res. 50: 267-274
23 Ikeda, T., H. J. S. Lam, and E. L. Bradley. 1973. Changes in Streptococcus mutans and Lantobacilli in plaque in relation to the initiation of dental caries in negro children. Arch. Oral Biol. 18: 555-556
24 Kwon, D. Y., M. Koo, C. R. Ryu, C. H. Kang, K. H. Min, and W. J. Kim. 2002. Bacteriocin produced by Pediococcus sp. in Kimchi and its characteristics. J. Microbiol. Biotechnol. 12(1): 96-105
25 Potvin, C., D. Leclerc, G. Tremblay, A. Asselin, and G. Bellemare. 1988. Cloning, sequencing and expression of a Bacillus bacteriolytic enzyme in E. coli. Mol. Gen. Genet. 214: 241-248
26 Soukka, T., J. Tenobuo, and J. Rundegren. 1993. Agglutination of Streptococcus mutans serotype c cells but inhibition of Porphyromonas gingivalis autoaggregation by human lactoferrin. Archs. Oral Biol. 38: 227-232
27 Rpsan, B. 1994. In Nisengard, R. J. and M. B. Newman (eds.). Oral Microbiology and Immunology, pp. 129-146. 2nd Ed. Saunders
28 Fan, D. P. 1970. The autolysin (5) of Bacillus subtilis as dechaining enzyme. J. Bacteriol. 103: 494-499   PUBMED
29 Willets, S. 1991. Essential Dental Microbiology. Appleton & Lange
30 Chun, J. Y., I. H. Ryu, J. S. Park, and K. S. Lee. 2002. Anticaries activity of antimicrobial material from Bacillus alkalophilshaggy JY-827. J. Microbiol. Biotechnol. 12(1): 18-24
31 Keyes, P. H. 1958. Dental caries in the molar teeth of rats. A method for diagnosing and scoring several types of lesions simultaneously. J. Dent. Res. 37: 1088-1099   DOI   PUBMED   ScienceOn
32 Margot, P., C. H. Roten, and D. Karamata. 1991. Nacetylmuramoyl- L-alanine amidase assay based on specific radioactive labeling of muropeptide L-alanine; Quantitation of the enzyme activity in the autolysin deficient Bacillus subtilis 168, flaD strain. Anal. Biochem. 198: 15-18
33 Montville, T. J., C. L. Cooney, and A. J. Sinskey. 1978. Streptococcus mutans dextranase. Adv. Appl. Microbiol. 24: 55-84
34 Slots, T. 1992. Contemporary Oral Microbiology and Immunology. Mosby-Year Book
35 Clarke, J. K. 1924. On the bacterial factor in the etiology of dental caries. Brit. J. Exp. Path. 5: 141-147
36 Ohk, S. H., Y. J. Yoo, and D. H. Bai. 2001. Purification and characterization of Streptococcus mutans cell wall hydrolase from Bacillus subtilis YL-1004. J. Microbiol. Biotechnol. 11(6): 957-963
37 Jung, M. H., S. H. Ohk, D. Y. Yum, I. S. Kong, D. H. Bai, and J. H. Yu. 1993. Nucleotide sequence of a bacteriolytic enzyme gene from alkalophilic Bacillus sp. J. Microbiol. Biotechnol. 3: 73-77
38 Graycar, T., M. Knapp, G. Ganshaw, J. Dauberman, and R. Bott. 1999. Engineered Bacillus lentus subtilisins having altered flexibility. J. Mol. Biol. 292(1): 97-109   DOI   ScienceOn
39 Koga, T., S. Sato, T. Yakushiji, and M. Inoue. 1983. Separation of insoluble and soluble glucan-synthesizing glycosyltransferases of Streptococcus mutans. Microbiol. Lett. 16: 127-130