• Title/Summary/Keyword: cell retention

Search Result 338, Processing Time 0.027 seconds

Treatment of Ethylene Glycol in Polyester Weight Loss Wastewater(II) - Reaction Kinetics- (Polyester 감량 폐수 중에 존재하는 Ethylene Glycol의 처리(II) -반응속도론-)

  • Han, Myung-Ho;Kim, Jeong-Mog;Huh, Man-Woo
    • Textile Coloration and Finishing
    • /
    • v.8 no.6
    • /
    • pp.27-32
    • /
    • 1996
  • This research is to investigate the reaction kinetics by air-lift bioreactor using calcium hydroxide, the neutralization agent and immobilization media, for removing ethylene glycol remained after chemical pretreatment. It was found that the optimum hydraulic retention time was obtained as 24.2hours at the optimum F/M ratio of 1.32kg-$TCOD_{Mn}$/day.kg-MLVSS, and then, infiuent $TCOD_{Mn}$ and MLVSS concentration were 3,290mg/l and 2,472mg/l, respectively. During the steady state, the kinetics constants such as maximum specific substrate removal rate, half saturation velocity coefficient, yield coefficient and endogenous respiration coefficient were estimated in the base of $TCOD_{Mn}$ as substrate concentration. And they were 1.47day$^{-1}$, 3.95mg/l, 0.391 and 0.092day$^{-1}$, respectively. And also, the oxgen use coefficients for cell synthesis, a', and energy of maintenance, b', were obtained as 0.4kg-O$_{2}$/kg-$TCOD_{Mn}$ and 0.056day$^{-1}$, at the steady state by the experimental result of oxygen uptake rate.

  • PDF

An Experimental Study on Bacterial Adhesion onto Activated Carbon and Ceramic (활성탄 및 세라믹 재질에의 세균 부착성에 대한 연구)

  • Kwon Sung-Hyun;Cho Dae-Chul;Rhee In-Hyoung
    • Journal of Environmental Science International
    • /
    • v.14 no.12
    • /
    • pp.1163-1170
    • /
    • 2005
  • The microbial adsorption characteristics of two different media for biological treatment were studied using attached diverse microbes onto activated carbon and ceramic. The results in the experiments of the characteristics of physical adhesion on two different media with addition of high and low concentrated substrate in the culture were observed that the efficient of adhesion onto F-400 activated carbon was higher over that of ceramic due to the surface area of media. The irradiation treatment by ultrasonication with 400 W power and 3 min retention time on the media without addition substrate conditions and subsequent mixing throughly the culture showed the highest efficiency of cell detachment on the media. Three different microbes, P. ovalis, A calcoaceticus, and B. subtillis were used for the study of the characteristics of microbial adhesion on the media. p ovalis showed the highest adhesion capability while B. subtillis showed the lowest capability adhesion onto media either addition of substrate in the culture. The mixed bacterial culture showed $10\%$ lower removal efficiency of DOC in the low concentrated substrate culture compared to the single pure culture. Whileas, it did not show significant difference between two cultures at high concentrated substrate. It was also observed same population density of microorganism by counting of microbes adhered to microbial media with an ultrasound treatment.

Protective Effects of Geupunggibodan on Brain Damage and Cognitive Dysfunction in Transient Focal Cerebral Ischemia in Rats (일시적 국소 뇌허혈 흰쥐모델에서 거풍지보단의 뇌손상 및 인지기능 보호효과)

  • Jung Sung-Wook;Chang Gyu-Tae;Kim Jang-Hyun
    • The Journal of Korean Medicine
    • /
    • v.26 no.2 s.62
    • /
    • pp.52-62
    • /
    • 2005
  • Objectives: This study was conducted to determine the effects of Geupunggibodan on brain damage in transient focal cerebral ischemia in rats. Methods: Rats were used for testing in the following three models: Morris water maze, eight-ann radial maze, and histochemistry. Results: In the Morris water maze model, the Geupunggibodan group showed significant decrease in the 3rd, 4th and 6th training sessions compared with the ischemia, group. A retention test in the Morris water maze model was performed on the 7th day without the escape platform. The Geupunggibodan group showed significant increase compared to the ischemia group. In the eight-ann radial maze model, the Geupunggibodan group showed significant decrease in the error rate compared to the ischemia group. In the density of hippocampal CA1 cell of the cresyl violet-stained section, the Geupunggibodan group showed significant increase compared to the ischemia group. Conclusions: These results suggest that Geupunggibodan may have a significant protective effect on brain damage and cognitive dysfunction in transient focal cerebral ischemia.

  • PDF

Screening of Inhibitory Activity of Plant Extracts against Farnesyl Protein Transferase (식물추출물의 파네실 전달효소 저해활성 검색)

  • Kang, Hyun-Mi;Lee, Seung-Ho;Ryu, Shi-Yong;Son, Kwang-Hee;Yang, Deok-Cho;Kwon, Byoung-Mog
    • Korean Journal of Pharmacognosy
    • /
    • v.34 no.1 s.132
    • /
    • pp.91-99
    • /
    • 2003
  • Ras proteins play an important role in intracellular signal transduction pathways involved in cell growth and the mutated twas genes have been found in thirty percent of human cancers. Ras proteins (H-, K- and N-Ras) are small guanine nucleotide binding proteins that undergo a series of posttranslational modifications including the farnesylation onto cysteine 186 at C-terminal of Ras by farnesyl protein transferase (FPTase). This is a mandatory process for retention of transforming ability. Therefore, inhibitors of FPTase have a promising to be effective antitumor agents. In our screening program for FPTase inhibitors, the methanol extracts of 193 plants were screened for the inhibitory activity against FPTase partially purified from the rat brain. Extracts of 7species plants including Areca catechu, Saururus chinensis, Curcuma longa, Artemisa princeps, Paeonia suffruticosa, Spatholobus suberectus, Cinnamomum cassia, Cinnamomum japonicum inhibited more than 60% of FPTase activity at a concentration of $100\;{\mu}g/ml$.

Effect of Gelling Agent Molecular Weight on Self-Discharge Behavior for Zinc-Air Batteries (아연-공기 전지용 전해질의 Gelling Agent 분자량에 따른 자가 방전 억제 효과)

  • Park, Jeong Eun;Jo, Yong Nam
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.812-817
    • /
    • 2019
  • A zinc-air battery is one of most promising advanced batteries due to its high specific energy density, low cost, and environmental friendliness. However, zinc anodes in zinc-air batteries lead to several issues including self-discharge, corrosion reaction, and hydrogen evolution reaction (HER). In this paper, viscosity of electrolyte has been controlled to suppress the corrosion reaction, HER, and self-discharge behavior. Various viscosity average molecular weights of poly(acrylic acid) (PAA) are adopted to prepare the electrolyte. The evaporation of electrolytes is proportional to the increase in molecular weight. In addition, enhanced self-discharge behavior is obtained when the gelling agent with high molecular weight is used. In addition, the zinc-air cell assembled with lower viscosity average molecular weight of PAA (Mv ~ 450,000) delivers 510.85 mAh/g and 489.30 mAh/g of discharge capacity without storage and with 6 hr storage, respectively. Also, highest capacity retention (95.78 %) is obtained among studied materials.

Continuous removal of phosphorus in water by physicochemical method using zero valent iron packed column (영가철 충진 컬럼을 이용한 연속적인 물리화학적 수중 인 제거)

  • Jeong, Jooyoung;Ahn, Byungmin;Kim, Jeongjoo;Park, Jooyang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.4
    • /
    • pp.439-444
    • /
    • 2013
  • Excessive phosphorus in aquatic systems causes algal bloom resulting in eutrophication, DO depletion, decline in recreational value of water and foul tastes. To treat wastewater containing phosphorus including effluent of wastewater treatment plant, the continuous experiments were performed by using electrochemical way. The spherical ZVI and silica sand which act as physical filter are packed at appropriate volume ratio of 1:2. Electric potential is applied externally which can be changed as per the operational requirement. The results indicate that optimum hydraulic retention time of 36 minutes (10 mL/min at 1 L reactor) was required to meet the effluent standards. Lower concentrations of phosphorus (<10 mg/L as phosphate) were removed by precipitation by contact with iron. Thus, additional electric potential was not required. In order to remove high concentration phosphorus around 150 mg/L as phosphate, external electric potential of 600 V was applied to the reactor.

Revisiting PPARγ as a target for the treatment of metabolic disorders

  • Choi, Sun-Sil;Park, Jiyoung;Choi, Jang Hyun
    • BMB Reports
    • /
    • v.47 no.11
    • /
    • pp.599-608
    • /
    • 2014
  • As the prevalence of obesity has increased explosively over the last several decades, associated metabolic disorders, including type 2 diabetes, dyslipidemia, hypertension, and cardiovascular diseases, have been also increased. Thus, new strategies for preventing and treating them are needed. The nuclear peroxisome proliferator-activated receptors (PPARs) are involved fundamentally in regulating energy homeostasis; thus, they have been considered attractive drug targets for addressing metabolic disorders. Among the PPARs, $PPAR{\gamma}$ is a master regulator of gene expression for metabolism, inflammation, and other pathways in many cell types, especially adipocytes. It is a physiological receptor of the potent anti-diabetic drugs of the thiazolidinediones (TZDs) class, including rosiglitazone (Avandia). However, TZDs have undesirable and severe side effects, such as weight gain, fluid retention, and cardiovascular dysfunction. Recently, many reports have suggested that $PPAR{\gamma}$ could be modulated by post-translational modifications (PTMs), and modulation of PTM has been considered as novel approaches for treating metabolic disorders with fewer side effects than the TZDs. In this review, we discuss how PTM of $PPAR{\gamma}$ may be regulated and issues to be considered in making novel anti-diabetic drugs that can modulate the PTM of $PPAR{\gamma}$.

The Fabrication and Characteristics of p-channel SONOS Charge-Trap Flash Memory (p채널 SONOS 전하트랩 플래시메모리의 제작 및 특성)

  • Kim, Byung-Cheul;Kim, Joo-Yeon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.604-607
    • /
    • 2008
  • In this study, p-channel silicon-oxide-nitride-oxide-silicon (SONOS) transistors are fabricated and characterized as an unit cell for NAND flash memory. The SONOS transistors are fabricated by $0.13{\mu}m$ low power standard logic process technology. The thicknesses of gate insulators are $20{\AA}$ for the tunnel oxide, $14{\AA}$ for the nitride layer, and $49{\AA}$ for the blocking oxide. The fabricated SONGS transistors show low programming voltage, fast erase speed, and relatively good retention and endurance.

  • PDF

Quantitation of Flurbiprofen in Isopropyl Myristate by High Performance Liquid Chromatography (고속액체크로마토그래피를 이용한 미리스틴산이소프로필증 플루르비프로펜의 정량)

  • Kim, Hyun;Chi, Sang-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.22 no.1
    • /
    • pp.63-68
    • /
    • 1992
  • An HPLC procedure with UV detection has been developed for the quantitation of flurbiprofen released into isopropyl myristate used as the receptor phase in an in vitro membraneless drug diffusion cell. The drug and the internal standard (oxaprozin) were extracted from isopropyl myristate with a mixture of dimethylsulfoxide:methanol:water (2:1:1) and quantitated using a reverse phase $C_{18}$ column. The chromatograms were completely free from interfering peaks, and the relative retention times of flurbiprofen and the internal standard were 4.9 and 6.8 min, respectively. Calibration plots were linear over the concentration range of $1-200\;{\mu}g/ml$ of flurbiprofen with correlation coefficients, all higher than 0.99. The mean intra-day precision and accuracy among three replicate sets of the assay in a day were 4.26 and 4.52%, respectively, whereas the mean inter-day precision and accuracy were 3.35 and 3.64%, respectively. The mean recovery of the drug was 92.5% over the calibration range. The method was simple, reliable and accurate for the quantitation of flurbiprofen in unpurified isopropyl myristate.

  • PDF

Catalytic Biofilms on Structured Packing for the Production of Glycolic Acid

  • Li, Xuan Zhong;Hauer, Bernhard;Rosche, Bettina
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.2
    • /
    • pp.195-204
    • /
    • 2013
  • While structured packing modules are known to be efficient for surface wetting and gas-liquid exchange in abiotic surface catalysis, this model study explores structured packing as a growth surface for catalytic biofilms. Microbial biofilms have been proposed as selfimmobilized and self-regenerating catalysts for the production of chemicals. A concern is that the complex and dynamic nature of biofilms may cause fluctuations in their catalytic performance over time or may affect process reproducibility. An aerated continuous trickle-bed biofilm reactor system was designed with a 3 L structured packing, liquid recycling and pH control. Pseudomonas diminuta established a biofilm on the stainless steel structured packing with a specific surface area of 500 $m^2m^{-3}$ and catalyzed the oxidation of ethylene glycol to glycolic acid for over two months of continuous operation. A steady-state productivity of up to 1.6 $gl^{-1}h^{-1}$ was achieved at a dilution rate of 0.33 $h^{-1}$. Process reproducibility between three independent runs was excellent, despite process interruptions and activity variations in cultures grown from biofilm effluent cells. The results demonstrate the robustness of a catalytic biofilm on structured packing, despite its dynamic nature. Implementation is recommended for whole-cell processes that require efficient gas-liquid exchange, catalyst retention for continuous operation, or improved catalyst stability.