• Title/Summary/Keyword: cell reprogramming

Search Result 139, Processing Time 0.024 seconds

Enzymatic DNA oxidation: mechanisms and biological significance

  • Xu, Guo-Liang;Walsh, Colum P.
    • BMB Reports
    • /
    • v.47 no.11
    • /
    • pp.609-618
    • /
    • 2014
  • DNA methylation at cytosines (5mC) is a major epigenetic modification involved in the regulation of multiple biological processes in mammals. How methylation is reversed was until recently poorly understood. The family of dioxygenases commonly known as Ten-eleven translocation (Tet) proteins are responsible for the oxidation of 5mC into three new forms, 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Current models link Tet-mediated 5mC oxidation with active DNA demethylation. The higher oxidation products (5fC and 5caC) are recognized and excised by the DNA glycosylase TDG via the base excision repair pathway. Like DNA methyltransferases, Tet enzymes are important for embryonic development. We will examine the mechanism and biological significance of Tet-mediated 5mC oxidation in the context of pronuclear DNA demethylation in mouse early embryos. In contrast to its role in active demethylation in the germ cells and early embryo, a number of lines of evidence suggest that the intragenic 5hmC present in brain may act as a stable mark instead. This short review explores mechanistic aspects of TET oxidation activity, the impact Tet enzymes have on epigenome organization and their contribution to the regulation of early embryonic and neuronal development.

Mitochondrial defect-responsive gene signature in liver-cancer progression

  • Lee, Young-Kyoung;Woo, Hyun Goo;Yoon, Gyesoon
    • BMB Reports
    • /
    • v.48 no.11
    • /
    • pp.597-598
    • /
    • 2015
  • Mitochondrial respiratory defect is a key bioenergetics feature of hepatocellular carcinoma (HCC) cells. However, their involvement and roles in HCC development and progression remain unclear. Recently, we identified 10 common mitochondrial defect (CMD) signature genes that may be induced by retrograde signaling-mediated transcriptional reprogramming in response to HCC mitochondrial defects. HCC patients with enriched expression of these genes had poor prognostic outcomes, such as shorter periods of overall survival and recurrence-free survival. Nuclear protein 1 (NUPR1), a key transcription regulator, was up-regulated by Ca++-mediated retrograde signaling. NUPR1-centric network analysis and a biochemical promoter-binding assay demonstrated that granulin (GRN) is a key downstream effector of NUPR1 for the regulation of HCC cell invasiveness; association analysis of the NUPR1-GRN pathway supported this conclusion. Mitochondrial respiratory defects and retrograde signaling thus play pivotal roles in HCC progression, highlighting the potential of the NUPR1-GRN axis as a novel diagnostic marker and therapeutic target for HCC.

The Pentose Phosphate Pathway as a Potential Target for Cancer Therapy

  • Cho, Eunae Sandra;Cha, Yong Hoon;Kim, Hyun Sil;Kim, Nam Hee;Yook, Jong In
    • Biomolecules & Therapeutics
    • /
    • v.26 no.1
    • /
    • pp.29-38
    • /
    • 2018
  • During cancer progression, cancer cells are repeatedly exposed to metabolic stress conditions in a resource-limited environment which they must escape. Increasing evidence indicates the importance of nicotinamide adenine dinucleotide phosphate (NADPH) homeostasis in the survival of cancer cells under metabolic stress conditions, such as metabolic resource limitation and therapeutic intervention. NADPH is essential for scavenging of reactive oxygen species (ROS) mainly derived from oxidative phosphorylation required for ATP generation. Thus, metabolic reprogramming of NADPH homeostasis is an important step in cancer progression as well as in combinational therapeutic approaches. In mammalian, the pentose phosphate pathway (PPP) and one-carbon metabolism are major sources of NADPH production. In this review, we focus on the importance of glucose flux control towards PPP regulated by oncogenic pathways and the potential therein for metabolic targeting as a cancer therapy. We also summarize the role of Snail (Snai1), an important regulator of the epithelial mesenchymal transition (EMT), in controlling glucose flux towards PPP and thus potentiating cancer cell survival under oxidative and metabolic stress.

RNA-Seq Analysis of the Arabidopsis Transcriptome in Pluripotent Calli

  • Lee, Kyounghee;Park, Ok-Sun;Seo, Pil Joon
    • Molecules and Cells
    • /
    • v.39 no.6
    • /
    • pp.484-494
    • /
    • 2016
  • Plant cells have a remarkable ability to induce pluripotent cell masses and regenerate whole plant organs under the appropriate culture conditions. Although the in vitro regeneration system is widely applied to manipulate agronomic traits, an understanding of the molecular mechanisms underlying callus formation is starting to emerge. Here, we performed genome-wide transcriptome profiling of wild-type leaves and leaf explant-derived calli for comparison and identified 10,405 differentially expressed genes (> two-fold change). In addition to the well-defined signaling pathways involved in callus formation, we uncovered additional biological processes that may contribute to robust cellular dedifferentiation. Particular emphasis is placed on molecular components involved in leaf development, circadian clock, stress and hormone signaling, carbohydrate metabolism, and chromatin organization. Genetic and pharmacological analyses further supported that homeostasis of clock activity and stress signaling is crucial for proper callus induction. In addition, gibberellic acid (GA) and brassinosteroid (BR) signaling also participates in intricate cellular reprogramming. Collectively, our findings indicate that multiple signaling pathways are intertwined to allow reversible transition of cellular differentiation and dedifferentiation.

X-linked adrenoleukodystrophy; Recent Advances in Classification, Diagnosis and Management (X 연관 부신백질이영양증의 분류, 진단 및 치료의 최신 지견)

  • Jung, Eul Sik;Ko, Ara;Kang, Hoon-Chul
    • Journal of the Korean Child Neurology Society
    • /
    • v.24 no.3
    • /
    • pp.71-83
    • /
    • 2016
  • X-linked adrenoleukodystrophy (X-ALD) is caused by mutations in the ATP binding cassette subfamily D member 1 (ABCD1), a gene that encodes peroxisomal membrane located on ABC half-transporter named adrenoleukodystrophy protein (ALDP). X-ALD is characterized by a highly variable clinical spectrum, including progressive cerebral type, adrenomyeloneuropathy, and addison-only phenotype. No genotype/phenotype correlation has been established. Thus, unidentified modifier genes and other co-factors are speculated to modulate the phenotypic variation and disease severity. Recent advanced sequencing methods and reprogramming technologies not only offer an affordable and applicable approach to investigate the pathophysiological mechanisms of adrenoleukodystrophy, but also provide means to develop therapy. A causal therapy of X-ALD is lacking. Lorenzo's oil therapy is recommended for asymptomatic boys, but the longest study found that the oil was not beneficial at all to symptomatic X-ALD patients. Hematopoietic stem cell therapy has a relevant chance of success when performed during this early stage of cerebral type X-ALD. Recently, it has been insisted that lentiviral-mediated gene therapy of hematopoietic stem cells can provide clinical benefits in X-ALD. This review describes current knowledge on the clinical presentation, pathogenesis, diagnosis and management of X- ALD.

Melatonin inhibits glycolysis in hepatocellular carcinoma cells by downregulating mitochondrial respiration and mTORC1 activity

  • Lee, Seunghyeong;Byun, Jun-Kyu;Kim, Na-Young;Jin, Jonghwa;Woo, Hyein;Choi, Yeon-Kyung;Park, Keun-Gyu
    • BMB Reports
    • /
    • v.55 no.9
    • /
    • pp.459-464
    • /
    • 2022
  • Various mechanisms have been suggested to explain the chemopreventive and tumor-inhibitory effects of melatonin. Despite the growing evidence supporting melatonin-induced mitochondrial dysfunction, it remains largely unknown how this phenomenon modulates metabolic reprogramming in cancer cells. The aim of our study was to identify the mechanism underlying the anti-proliferative and apoptotic effects of melatonin, which is known to inhibit glycolysis. We analyzed the time-dependent effects of melatonin on mitochondrial respiration and glycolysis in liver cancer cells. The results showed that from a cell bioenergetic point of view, melatonin caused an acute reduction in mitochondrial respiration, however, increased reactive oxygen species production, thereby inhibiting mTORC1 activity from an early stage post-treatment without affecting glycolysis. Nevertheless, administration of melatonin for a longer time reduced expression of c-Myc protein, thereby suppressing glycolysis via downregulation of HK2 and LDHA. The data presented herein suggest that melatonin suppresses mitochondrial respiration and glycolysis simultaneously in HCC cells, leading to anti-cancer effects. Thus, melatonin can be used as an adjuvant agent for therapy of liver cancer.

Elucidating molecular mechanisms of acquired resistance to BRAF inhibitors in melanoma using a microfluidic device and deep sequencing

  • Han, Jiyeon;Jung, Yeonjoo;Jun, Yukyung;Park, Sungsu;Lee, Sanghyuk
    • Genomics & Informatics
    • /
    • v.19 no.1
    • /
    • pp.2.1-2.10
    • /
    • 2021
  • BRAF inhibitors (e.g., vemurafenib) are widely used to treat metastatic melanoma with the BRAF V600E mutation. The initial response is often dramatic, but treatment resistance leads to disease progression in the majority of cases. Although secondary mutations in the mitogen-activated protein kinase signaling pathway are known to be responsible for this phenomenon, the molecular mechanisms governing acquired resistance are not known in more than half of patients. Here we report a genome- and transcriptome-wide study investigating the molecular mechanisms of acquired resistance to BRAF inhibitors. A microfluidic chip with a concentration gradient of vemurafenib was utilized to rapidly obtain therapy-resistant clones from two melanoma cell lines with the BRAF V600E mutation (A375 and SK-MEL-28). Exome and transcriptome data were produced from 13 resistant clones and analyzed to identify secondary mutations and gene expression changes. Various mechanisms, including phenotype switching and metabolic reprogramming, have been determined to contribute to resistance development differently for each clone. The roles of microphthalmia-associated transcription factor, the master transcription factor in melanocyte differentiation/dedifferentiation, were highlighted in terms of phenotype switching. Our study provides an omics-based comprehensive overview of the molecular mechanisms governing acquired resistance to BRAF inhibitor therapy.

Decreases in $Casz1$ mRNA by an siRNA Complex Do not Alter Blood Pressure in Mice

  • Ji, Su-Min;Shin, Young-Bin;Park, So-Yon;Lee, Hyeon-Ju;Oh, Berm-Seok
    • Genomics & Informatics
    • /
    • v.10 no.1
    • /
    • pp.40-43
    • /
    • 2012
  • Recent genomewide association studies of large samples have identified genes that are associated with blood pressure. The Global Blood Pressure Genetics (Global BPgen) and Cohorts for Heart and Aging Research in Genome Epidemiology (CHARGE) consortiums identified 14 loci that govern blood pressure on a genomewide significance level, one of which is $CASZ1$ confirmed in both Europeans and Asians. $CASZ1$ is a zinc finger transcription factor that controls apoptosis and cell fate and suppresses neuroblastoma tumor growth by reprogramming gene expression, like a tumor suppressor. To validate the function of $CASZ1$ in blood pressure, we decreased $Casz1$ mRNA levels in mice by siRNA. $Casz1$ siRNA reduced mRNA levels by 59% in a mouse cell line. A polyethylenimine-mixed siRNA complex was injected into mouse tail veins, reducing $Casz1$ mRNA expression to 45% in the kidney. However, blood pressure in the treated mice was unaffected, despite a 55% reduction in $Casz1$ mRNA levels in the kidney on multiple siRNA injections daily. Even though $Casz1$ siRNA-treated mice did not experience any significant change in blood pressure, our study demonstrates the value of $in$ $vivo$ siRNA injection in analyzing the function of candidate genes identified by genomewide association studies.

Global DNA Methylation of Porcine Embryos during Preimplantation Development

  • Yeo, S.E.;Kang, Y.K.;Koo, D.B.;Han, J.S.;Yu, K.;Kim, C.H.;Park, H.;Chang, W.K.;Lee, K.K.;Han, Y.M.
    • Korean Journal of Animal Reproduction
    • /
    • v.27 no.4
    • /
    • pp.309-315
    • /
    • 2003
  • DNA methylation at CpG sites, which is a epigenetic modification, is associated with gene expression without change of DNA sequences. During early mouse embryogenesis, dynamic changes of DNA methylation occur. In this study, DNA methylation patterns of porcine embryos produced in vivo and in vitro were examined at various developmental stages by the immunocytochemical staining method. Interestingly, active demethylation was not observed on the paternal pronucleus of porcine zygotes. However, differences were detected in the passive demethylation process between in vivo and in vitro embryos. There was no change in the DNA methylation state until the blastocyst stage of in vivo embryos, whereas partial demethylation was observed in several blastomeres from a 4 cell stage to a morula stage of in vitro embryos. The whole genome of inner cell mass (ICM) and trophectoderm (TE) cells in porcine blastocysts were evenly methylated without de novo methylation. Our findings demonstrate that genome-wide demethylation does not occur in pig embryos during preimplantation development unlike murine and bovine embryos. It indicates that the machinery regulating epigenetic reprogramming may be different between species.

Growth Factors Supplementation in Culture Medium Leads to Active Proliferation of Porcine Fibroblasts

  • Kim, Bella;Ko, Na-Young;Hwang, Seong-Soo;Im, Gi-Sun;Kim, Dong-Hoon;Park, Jin-Ki;Ryoo, Zae-Young;Oh, Keon-Bong
    • Reproductive and Developmental Biology
    • /
    • v.35 no.3
    • /
    • pp.301-306
    • /
    • 2011
  • Fibroblasts of large animals are easy to isolate and to maintain in vitro culture. Thus, these cells are extensively applied to donor cell for somatic cell nuclear transfer, and to substrate cells to generate induced pluripotent stem cells after transfection of requited genes to be essentially required for direct reprogramming. However, limited mitotic activity of fibroblasts to differentiate along a terminal lineage becomes restrictive for their versatile application. Recently, commercial culture medium and systems developed for primary cells are provided by manufactures. In this study, we examined whether one of the systems developed for primary fibroblasts of human are effective on porcine ear skin fibroblasts. To this end, we performed proliferation assay after five days culture in vitro of porcine fibroblasts in medium DMEM, which is generally used for fibroblasts culture, and medium M106 for human dermal fibroblasts, supplemented with various concentrations of FBS and LSGS contained mainly growth factors, respectively. Consequence was that presence of 15% FBS and 0.1 ${\times}$ concentrations of LSGS in DMEM showed most active proliferation of porcine fibroblasts.