• Title/Summary/Keyword: cell population

Search Result 1,196, Processing Time 0.024 seconds

Identification of a Cancer Stem-like Population in the Lewis Lung Cancer Cell Line

  • Zhang, An-Mei;Fan, Ye;Yao, Quan;Ma, Hu;Lin, Sheng;Zhu, Cong-Hui;Wang, Xin-Xin;Liu, Jia;Zhu, Bo;Sun, Jian-Guo;Chen, Zheng-Tang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.3
    • /
    • pp.761-766
    • /
    • 2012
  • Objective: Although various human cancer stem cells (CSCs) have been defined, their applications are restricted to immunocompromised models. Developing a novel CSC model which could be used in immunocompetent or transgenic mice is essential for further understanding of the biomolecular characteristics of tumor stem cells. Therefore, in this study, we analyzed murine lung cancer cells for the presence of CSCs. Methods: Side population (SP) cells were isolated by fluorescence activated cell sorting, followed by serum-free medium (SFM) culture, using Lewis lung carcinoma cell (LLC) line. The self-renewal, differentiated progeny, chemosensitivity, and tumorigenic properties in SP and non-SP cells were investigated through in vitro culture and in vivo serial transplantation. Differential expression profiles of stem cell markers were examined by RT-PCR. Results: The SP cell fraction comprised 1.1% of the total LLC population. SP cells were available to grow in SFM, and had significantly enhanced capacity for cell proliferation and colony formation. They were also more resistant to cisplatin in comparison to non-SP cells, and displayed increased tumorigenic ability. Moreover, SP cells showed higher mRNA expression of Oct-4, ABCG2, and CD44. Conclusion: We identified SP cells from a murine lung carcinoma, which possess well-known characteristics of CSCs. Our study established a useful model that should allow investigation of the biological features and pharmacosensitivity of lung CSCs, both in vitro and in syngeneic immunocompetent or transgenic/knockout mice.

Relieving effect for respiratory inflammation of Gumiganghwal-tang (구미강활탕(九味羌活湯)의 호흡기 염증 완화효과)

  • Bo-In Kwon;Joo-Hee Kim
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.27 no.3
    • /
    • pp.35-46
    • /
    • 2023
  • Objectives : Gumiganghwal-tang and its main components have been used for treatment of cough, headache, joint pain and fever. Using a respiratory inflammatory model, we intend to demonstrate the its anti-inflammatory effect and immune mechanism of Gumiganghwal-tang. Methods : We induced the respiratory inflammation mouse model by papain treatment. Female BALB/C mice (8 weeks old) were divided into three groups as follows: saline control group, papain treatment group (vehicle), papain and Gumiganghwal-tang (200 mg/kg) treatment group (n=4). To verify the anti-inflammatory effect of Gumiganghwal-tang extracts, we measured the infiltration of inflammatory cells in bronchoalveolar lavage fluid (BALF) and nasal lavage fluid (NALF). Additionally, the efficacy of Gumiganghwal-tang extracts on Th2 cell population and alveolar macrophage in lung were analyzed by using flow cytometry. Results : Gumiganghwal-tang extracts administration decreased inflammatory cell infiltration in BALF and NALF, especially of eosinophils. Furthermore, interleukin-5 level was reduced in lung by drug administration. Interestingly, Gumiganghwal-tang extracts treatment also decreased the Th2 cell (CD4+GATA3+) population and increased the alveolar macrophage (CD11b+CD11c+) population in lung. Conclusions : Our findings indicate that Gumiganghwal-tang extracts have anti-inflammatory effects by mediating Th2 cell and alveolar macrophage cell activation.

Stem Cell Based Strategies for the Treatment of Degenerative Retinal Diseases (망막변성질환에서의 줄기세포 기반치료)

  • Park, Jung-Hyun;Ku, Seung-Yup;Cho, Myung-Soo;Lee, Hak-Sup;Choi, Young-Min;Moon, Shin-Yong;Yu, Hyeong-Gon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.37 no.3
    • /
    • pp.199-206
    • /
    • 2010
  • Stem-cell therapy has the potential to improve vision in patients with untreatable retinal disease. Various types of cell source including fetal, embryonic and adult stem cells, intrinsic and extrinsic factors for differentiation into retinal progenitors and transplantation mode were discussed in this review. Experimental approaches have successfully induced photoreceptor precursor cells and retinal pigment epithelium. Stem-cell-based therapy is a promising treatment to restore vision in patients with retinal disease, in spite of the challenges.

Identification and Characterization of a KDR-positive Mesoderm Population Derived from Human Embryonic Stem Cells Post BMP4 Treatment (BMP4 처리에 의한 인간 배아줄기세포 유래 KDR 양성 중배엽성 세포군의 분화 양상 조사)

  • Kim, Jung-Mo;Son, On-Ju;Cho, Youn-Jeong;Lee, Jae-Ho;Chung, Hyung-Min
    • Reproductive and Developmental Biology
    • /
    • v.35 no.1
    • /
    • pp.9-15
    • /
    • 2011
  • The functional cardiovascular system is comprised of distinct mesoderm-derived lineages including endothelial cells, vascular smooth muscle cells and other mesenchymal cells. Recent studies in the human embryonic stem cell differentiation model have provided evidence indicating that these cell lineages are developed from the common progenitors such as hemangioblasts and cardiovascular progenitor cells. Also, the studies have suggested that these progenitors have a common primordial progenitor, which expresses KDR (human Flk-1, also known as VEGFR2, CD309). We demonstrate here that sustained activation of BMP4 (bone morphogenetic protein 4) in hESC line, CHA15 hESC results in $KDR^+$ mesoderm specific differentiation. To determine whether the $KDR^+$ population derived from hESCs enhances potential to differentiate along multipotential mesodermal lineages than undifferentiated hESCs, we analyzed the development of the mesodermal cell types in human embryonic stem cell differentiation cultures. In embryoid body (EB) differentiation culture conditions, we identified an increased expression of $KDR^+$ population from BMP4-stimulated hESC-derived EBs. After induction with additional growth factors, the $KDR^+$ population sorted from hESCs-derived EBs displays mesenchymal, endothelial and vascular smooth muscle potential in matrix-coated monolayer culture systems. The populations plated in monolayer cultures expressed increased levels of related markers and exhibit a stable/homologous phenotype in culture terms. In conclusion, we demonstrate that the $KDR^+$ population is stably isolated from CHA15 hESC-derived EBs using BMP4 and growth factors, and sorted $KDR^+$ population can be utilized to generate multipotential mesodermal progenitors in vitro, which can be further differentiated into cardiovascular specific cells.

Serum Deprivation Enhances Apoptotic Cell Death by Increasing Mitochondrial Enzyme Activity

  • Moon, Eun-Yi
    • Biomolecules & Therapeutics
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Mitochondria are important sensor of apoptosis. $H_2O_2-induced$ cell death rate was enhanced by serum deprivation. In this study, we investigated whether serum deprivation using 0.5 or 3 % FBS induces apoptotic cell death through mitochondrial enzyme activation as compared to 10 % FBS. Apoptotic cell death was observed by chromosome condensation and the increase of sub-G0/G1 population. Serum deprivation reduced cell growth rate, which was confirmed by the decrease of S-phase population in cell cycle. Serum deprivation significantly increased caspase-9 activity and cytochrome c release from mitochondria into cytosol. Serum deprivation-induced mitochondrial changes were also indicated by the increase of ROS production and the activation of mitochondrial enzyme, succinate dehydrogenase. Mitochondrial enzyme activity increased by serum deprivation was reduced by the treatment with rotenone, mitochondrial electron transport inhibitor. In conclusion, serum deprivation induced mitochondrial apoptotic cell death through the elevation of mitochondrial changes such as ROS production, cytochrome c release and caspase-9 activation. It suggests that drug sensitivity could be enhanced by the increase of mitochondrial enzyme activity in serum-deprived condition.

Derivation of MSC Like-Cell Population from Feeder Free Cultured hESC and Their Proteomic Analysis for Comparison Study with BM-MSC (Feeder Free 상태에서 배양된 인간 배아 줄기세포를 이용한 중간엽 줄기세포 분화 및 단백체학을 이용한 골수 유래 중간엽 줄기세포와의 비교)

  • Park, Soon-Jung;Jeon, Young-Joo;Kim, Ju-Mi;Shin, Jeong-Min;Chae, Jung-Il;Chung, Hyung-Min
    • Reproductive and Developmental Biology
    • /
    • v.34 no.3
    • /
    • pp.143-151
    • /
    • 2010
  • Pluripotency of human embryonic stem cell (hESC) is one of the most valuable ability of hESCs for applying cell therapy field, but also showing side effect, for example teratoma formation. When transplant multipotent stem cell, such as mesnchymal stem cell (MSC) which retains similar differentiation ability, they do not form teratoma in vivo, but there exist limitation of cellular source supply. Accordingly, differentiation of hESC into MSC will be promising cellular source with strong points of both hESC and MSC line. In this study, we described the derivation of MSC like cell population from feeder free cultured hESC (hESC-MSC) using direct differentiation system. Cells population, hESC-MSC and bone marrow derived MSC (BM-MSC) retained similar characteristics in vitro, such as morphology, MSC specific marker expression and differentiation capacity. At the point of differentiation of both cell populations, differentiation rate was slower in hESC-MSC than BM-MSC. As these reason, to verify differentially expressed molecular condition of both cell population which bring out different differentiation rate, we compare the molecular condition of hESC-MSC and BM-MSC using 2-D proteomic analysis tool. In the proteomic analysis, we identified 49 differentially expressed proteins in hESC-MSC and BM-MSC, and they involved in different biological process such as positive regulation of molecular function, biological process, cellular metabolic process, nitrogen compound metabolic process, macromolecule metabolic process, metabolic process, molecular function, and positive regulation of molecular function and regulation of ubiquitin protein ligase activity during mitotic cell cycle, cellular response to stress, and RNA localization. As the related function of differentially expressed proteins, we sought to these proteins were key regulators which contribute to their differentiation rate, developmental process and cell proliferation. Our results suggest that the expressions of these proteins between the hESC-MSC and BM-MSC, could give to us further evidence for hESC differentiation into the mesenchymal stem cell is associated with a differentiation factor. As the initial step to understand fundamental difference of hESC-MSC and BM-MSC, we sought to investigate different protein expression profile. And the grafting of hESC differentiation into MSC and their comparative proteomic analysis will be positively contribute to cell therapy without cellular source limitation, also with exact background of their molecular condition.

Single cell heterogeneity in human pluripotent stem cells

  • Yang, Seungbok;Cho, Yoonjae;Jang, Jiwon
    • BMB Reports
    • /
    • v.54 no.10
    • /
    • pp.505-515
    • /
    • 2021
  • Human pluripotent stem cells (hPSCs) include human embryonic stem cells (hESCs) derived from blastocysts and human induced pluripotent stem cells (hiPSCs) generated from somatic cell reprogramming. Due to their self-renewal ability and pluripotent differentiation potential, hPSCs serve as an excellent experimental platform for human development, disease modeling, drug screening, and cell therapy. Traditionally, hPSCs were considered to form a homogenous population. However, recent advances in single cell technologies revealed a high degree of variability between individual cells within a hPSC population. Different types of heterogeneity can arise by genetic and epigenetic abnormalities associated with long-term in vitro culture and somatic cell reprogramming. These variations initially appear in a rare population of cells. However, some cancer-related variations can confer growth advantages to the affected cells and alter cellular phenotypes, which raises significant concerns in hPSC applications. In contrast, other types of heterogeneity are related to intrinsic features of hPSCs such as asynchronous cell cycle and spatial asymmetry in cell adhesion. A growing body of evidence suggests that hPSCs exploit the intrinsic heterogeneity to produce multiple lineages during differentiation. This idea offers a new concept of pluripotency with single cell heterogeneity as an integral element. Collectively, single cell heterogeneity is Janus-faced in hPSC function and application. Harmful heterogeneity has to be minimized by improving culture conditions and screening methods. However, other heterogeneity that is integral for pluripotency can be utilized to control hPSC proliferation and differentiation.

Microfluidic Devices for Cell Analysis

  • Bachman, Mark;Li, G.P.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.3.2-3.2
    • /
    • 2009
  • Microfluidics and BioMEMStechnology has increasingly been used as a tool for studying small volumes oftissue and even individual cells. One of the most important benefits ofmicrofluidic technology is the potential to build devices that analyze and sortmammalian cells. The "sorting problem" typically requires that a fewcells be selected and isolated from a larger population of hundreds, thousandsor even millions of other cells. For example, cancer tumor cells may resideamong a large population of healthy cells, but it would be of great interest toidentify, isolate and study only the cancer cells. In another application, onemay want to determine the number of white blood cells within a sample of blood.We have developed microfluidic devices that enable researchers to select cellsfrom a population by a variety of methods, including antibody staining,dielectrophoretic selection, and physical size selection. These devices haveapplications in cancer research where cancer cells must be identified fromnormal tissue, but where only small samples of tissue are available. In thistalk, we will present some of our microfluidic cell sorting devices, discusstheir physical principles, and their use in biological applications.

  • PDF

Characteristics of Hypervariable Regions of Mitochondrial DNA in Korean Population

  • Han, Jae-Seok;Lee, Dong-Hoon;Rho, Hyune-Mo
    • BMB Reports
    • /
    • v.31 no.6
    • /
    • pp.604-606
    • /
    • 1998
  • The nucleotide sequence of two hypervariable regions of the D-loop and the frequency of the 9-bp repeat in the region V of mitochondrial DNA (mtDNA) were investigated in the Korean population. Alignment of these sequences with the published reference revealed a unique pattern of base substitution and deletion compared with those of other races. The deletion and addition frequency of the 9-bp repeat in the region V was also distinct.

  • PDF

The Spatial Statistical Relationships between Road-traffic Noise and Urban Components Including Population, Building, Road-traffic and Land-use (공간통계모형을 이용한 도로 소음과 도시 구성 요소의 관계 연구)

  • Ryu, Hunjae;Park, In Kwon;Chang, Seo Il;Chun, Bum Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.4
    • /
    • pp.348-356
    • /
    • 2014
  • To understand the relationship between road-traffic noise and urban components such as population, building, road-traffic and land-use, the city of Cheongju that already has road-traffic noise maps of daytime and nighttime was selected for this study. The whole area of the city is divided into square cells of a uniform size and for each cell, the urban components are estimated. A spatial representative noise level for each cell is determined by averaging out population-weighted facade noise levels for noise exposure population within the cell during nighttime. The relationship between the representative noise level and the urban components is statistically modeled at the cell level. Specially, we introduce a spatial auto regressive model and a spatial error model that turns out to explain above 85 % of the noise level. These findings and modeling methods can be used as a preliminary tool for environmental planning and urban design in modern cities in consideration of noise exposure.