• Title/Summary/Keyword: cell phenotypes

Search Result 238, Processing Time 0.03 seconds

The Decreased Expression of Fbxw7 E3 Ligase Mediated by Cancer Upregulated Gene 2 Confers Cancer Stem Cell-like Phenotypes (CUG2 유전자에 의하여 감소된 FBXW7 E3 ligase 발현이 유사-종양줄기세포 표현형을 유도)

  • Yawut, Natpaphan;Kim, Namuk;Budluang, Phatcharaporn;Cho, Il-Rae;Kaowinn, Sirichat;Koh, Sang Seok;Kang, Ho Young;Chung, Young-Hwa
    • Journal of Life Science
    • /
    • v.32 no.4
    • /
    • pp.271-278
    • /
    • 2022
  • The detailed mechanism by which cancer upregulated gene 2 (CUG2) overexpression induces cancer stem cell-like phenotypes is not fully understood. The downregulation of FBXW7 E3 ligase, a tumor suppressor known for its proteolytic regulation of oncogenic proteins such as cyclin E, c-Myc, Notch, and Yap1, has been frequently reported in several types of tumor tissues, including those in the large intestine, cervix, and stomach. Therefore, we investigated whether FBXW7 is involved in CUG2-induced oncogenesis. In this study, the decreased expression of FBXW7 was examined in human lung adenocarcinoma A549 (A549-CUG2) and human bronchial BEAS-2B cells (BEAS-CUG2) overexpressing CUG2 and compared with control cells stably expressing an empty vector (A549-Vec or BEAS-Vec). Treatment with MG132 (a proteosome inhibitor) prevented the degradation of FBXW7 and Yap1 proteins, which are substrates of the FBXW7 E3 ligase. To address the role of Fbxw7 in the development of cancer stem cell (CSC) phenotypes, we suppressed Fbxw7 protein levels using its siRNA. We observed that decreased levels of FBXW7 enhanced cell migration, invasion, and spheroid size and number in A549-Vec and BEAS-Vec cells. The enforced expression of FBXW7 produced the opposite results in A549-CUG2 and BEAS-CUG2 cells. Furthermore, the downregulation of FBXW7 elevated the activities of EGFR, Akt, and ERK1/2 and upregulated β-catenin, Yap1, and NEK2, while the enforced expression of FBXW7 generated the opposite results. We thus propose that FBXW7 downregulation induced by CUG2 confers CSC-like phenotypes through the upregulation of both the EGFR-ERK1/2 and β-catenin-Yap1-NEK2 signaling pathways.

Phenotype Changes in Immune Cell Activation in Obesity (비만 환경 내 면역세포 활성화 표현형의 변화)

  • Ju-Hwi Park;Ju-Ock Nam
    • Journal of Life Science
    • /
    • v.33 no.3
    • /
    • pp.295-303
    • /
    • 2023
  • Immune and metabolic systems are important factors in maintaining homeostasis. Immune response and metabolic regulation are highly associated, so, when the normal metabolism is disturbed, the immune response changed followed the metabolic diseases occur. Likewise, obesity is highly related to immune response. Obesity, which is caused by an imbalance in energy metabolism, is associated with metabolic diseases, such as insulin resistance, type 2 diabetes, fatty liver diseases, atherosclerosis and hypertension. As known, obesity is characterized in chronic low-grade inflammation. In obesity, the microenvironment of immune cells became inflammatory by the unique activation phenotypes of immune cells such as macrophage, natural killer cell, T cell. Also, the immune cells interact each other in cellular or cytokine mechanisms, which intensify the obesity-induced inflammatory response. This phenomenon suggests the possibility of regulating the activation of immune cells as a pharmacological therapeutic strategy for obesity in addition to the common pharmacological treatment of obesity which is aimed at inhibiting enzymes such as pancreatic lipase and α-amylase or inhibiting differentiation of preadipocytes. In this review, we summarize the activation phenotypes of macrophage, natural killer cell and T cell, and their aspects in obesity. We also summarize the pharmacological substances that alleviates obesity by regulating the activation of immune cells.

STIMULATION OF OSTEOBLASTIC PHENOTYPES BY STRONTIUM IN PERIOSTEAL-DERIVED CELLS (골막기원세포에서 strontium에 의한 조골세포 표현형의 활성)

  • Kim, Shin-Won;Kim, Uk-Kyu;Park, Bong-Wook;Hah, Young-Sool;Cho, Hee-Young;Kim, Jung-Hwan;Kim, Deok-Ryong;Kim, Jong-Ryoul;Joo, Hyun-Ho;Byun, June-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.3
    • /
    • pp.199-206
    • /
    • 2010
  • This study investigated the effects of strontium on osteoblastic phenotypes of cultured human periostealderived cells. Periosteal tissues were harvested from mandible during surgical extraction of lower impacted third molar. Periosteal-derived cells were introduced into cell culture. After passage 3, the periostealderived cells were further cultured for 28 days in an osteogenic induction DMEM medium supplemented with fetal bovine serum, ascorbic acid 2-phosphate, dexamethasone and at a density of $3{\times}10^4$ cells/well in a 6-well plate. In this culture medium, strontium at different concentrations (1, 5, 10, and 100 ${\mu}g$/mL) was added. The medium was changed every 3 days during the incubation period. We examined the cellular proliferation, histochemical detection and biochemical measurements of alkaline phosphatase (ALP), the RT-PCR analysis for ALP and osteocalcin, and von Kossa staining and calcium contents in the periostealderived cells. Cell proliferation was not associated with the addition of strontium in periosteal-derived cells. The ALP activity in the periosteal-derived cells was higher in 5, 10, and 100 ${\mu}g$/ml strontium-treated cells than in untreated cells at day 14 of culture. Among the strontium-treated cells, the ALP activity was appreciably higher in 100 ${\mu}g$/ml strontium-treated cells than in 5 and 10 ${\mu}g$/ml strontium-treated cells. The levels of ALP and osteocalcin mRNA in the periosteal-derived cells was also higher in strontium-treated cells than in untreated cells at day 14 of culture. Their levels were increased in a dose-dependent manner. Von Kossa-positive mineralization nodules were strongly observed in the 1 ${\mu}g$/ml strontium-treated cells at day 21 and 28 of culture. The calcium content in the periosteal-derived cells was also higher in 1 ${\mu}g$/ml strontium-treated cells at day 28 of culture. These results suggest that low concentration of strontium stimulates the osteoblastic phenotypes of more differentiated periosteal-derived cells, whereas high concentration of strontium stimulates the osteoblastic phenotypes of less differentiated periosteal-derived cells. The effects of strontium on osteoblastic phenotypes of periosteal-derived cells appear to be associated with differentiation-extent.

Nicotinamide Exerts Antioxidative Effects on Senescent Cells

  • Kwak, Ju Yeon;Ham, Hyun Joo;Kim, Cheol Min;Hwang, Eun Seong
    • Molecules and Cells
    • /
    • v.38 no.3
    • /
    • pp.229-235
    • /
    • 2015
  • Nicotinamide (NAM) has been shown to suppress reactive oxygen species (ROS) production in primary human fibroblasts, thereby extending their replicative lifespan when added to the medium during long-term cultivation. Based on this finding, NAM is hypothesized to affect cellular senescence progression by keeping ROS accumulation low. In the current study, we asked whether NAM is indeed able to reduce ROS levels and senescence phenotypes in cells undergoing senescence progression and those already in senescence. We employed two different cellular models: MCF-7 cells undergoing senescence progression and human fibroblasts in a state of replicative senescence. In both models, NAM treatment substantially decreased ROS levels. In addition, NAM attenuated the expression of the assessed senescence phenotypes, excluding irreversible growth arrest. N-acetyl cysteine, a potent ROS scavenger, did not have comparable effects in the tested cell types. These data show that NAM has potent antioxidative as well as anti-senescent effects. Moreover, these findings suggest that NAM can reduce cellular deterioration caused by oxidative damage in postmitotic cells in vivo.

Genetic relationship between the SPT3 gene and ARS/cAMP pathway in yeast cell cycle control (Genetic Relationship between the SPT3 Gene and RAS/cAMP Pathway in Yeast Cell Cycle Control)

  • Shin, Deug-Yong;Yun, Jean-Ho
    • Journal of Microbiology
    • /
    • v.34 no.2
    • /
    • pp.158-165
    • /
    • 1996
  • The signal transduction pathways through the RAS gene product and adenyl cyclease play a critical role in regulation of the cell cycle in yeast, Saccharomyces cerevisiae. We examined the genetic relationship between the spt3 gene and ras/cAMP pathway. A mutation in the SPT3 gene suppressed cell cycle arrest at the G1 phase caused by either an inactivation of the RAS or CYR1 gene which encodes a yeast homologue of human ras proto-oncogene or adenyl cyclase, respectively. The phenotypes such as sporulation and heat shock resistancy, that resulted from a partial inactivation of the RAS or CYR1 genes, were also suppressed by the spt3 mutation. Expression of the SSA1 gene encoding one of th heat shock proteins (Hsp70) can be induced by heat shock or nitrogen starvation. Expression of this gene is derepressed in cry1-2 and spt3 mutants. The bcy 1 mutation repressed by the bcy1 mutation, but not in spt3 mutants. These results suggest that the SPT gene is involved in expression of genes that are affected by the RAS/cAMP pathway.

  • PDF

T Regulatory Cell Responses to Immunization with a Soluble Egg Antigen in $Schistosoma$ $mansoni$-Infected Mice

  • El-Ahwany, Eman;Bauiomy, Ibrahim Rabia;Nagy, Faten;Zalat, Rabab;Mahmoud, Ola;Zada, Suher
    • Parasites, Hosts and Diseases
    • /
    • v.50 no.1
    • /
    • pp.29-35
    • /
    • 2012
  • The aim of the study is to characterize the phenotypes of $CD4^+$ $CD25^+$ T regulatory cells within the liver granulomas and association with both Foxp-3 gene expression and splenic cytokines. Naive C57BL/6 mice were intravenously injected with multiple doses of the soluble egg antigen (SEA) 7 days before cercarial infection. The immunized and infected control groups were sacrificed 8 and 16 weeks post-infection (PI). Histopathology, parasitological parameters, splenic phenotypes for T regulatory cells, the FOXP-3 expression in hepatic granuloma using real-time PCR, and the associated splenic cytokines were studied. Histopathological examination of the liver revealed remarkable increase in degenerated ova within hepatic granuloma which decreased in diameter at weeks 8 and 16 PI ($P$<0.01). The percentage of T regulatory cells ($CD4^+$ $CD25^+$) increased significantly ($P$<0.01) in the immunized group compared to the infected control at weeks 8 and 16 PI. The FOXP-3 expression in hepatic granulomas increased from 10 at week 8 to 30 fold at week 16 PI in the infected control group. However, its expression in the immunized group showed an increase from 30 at week 8 to 70 fold at week 16 PI. The splenic cytokine levels of pro-inflammatory cytokines, IFN-${\gamma}$, IL-4, and TNF-${\alpha}$, showed significant decreases ($P$<0.05) compared to the infected control group. In conclusion, the magnitude and phenotype of the egg-induced effects on T helper responses were found to be controlled by a parallel response within the T regulatory population which provides protection in worm parasite-induced immunopathology.

Etoposide Induces Mitochondrial Dysfunction and Cellular Senescence in Primary Cultured Rat Astrocytes

  • Bang, Minji;Kim, Do Gyeong;Gonzales, Edson Luck;Kwon, Kyoung Ja;Shin, Chan Young
    • Biomolecules & Therapeutics
    • /
    • v.27 no.6
    • /
    • pp.530-539
    • /
    • 2019
  • Brain aging is an inevitable process characterized by structural and functional changes and is a major risk factor for neurodegenerative diseases. Most brain aging studies are focused on neurons and less on astrocytes which are the most abundant cells in the brain known to be in charge of various functions including the maintenance of brain physical formation, ion homeostasis, and secretion of various extracellular matrix proteins. Altered mitochondrial dynamics, defective mitophagy or mitochondrial damages are causative factors of mitochondrial dysfunction, which is linked to age-related disorders. Etoposide is an anti-cancer reagent which can induce DNA stress and cellular senescence of cancer cell lines. In this study, we investigated whether etoposide induces senescence and functional alterations in cultured rat astrocytes. Senescence-associated ${\beta}$-galactosidase (SA-${\beta}$-gal) activity was used as a cellular senescence marker. The results indicated that etoposide-treated astrocytes showed cellular senescence phenotypes including increased SA-${\beta}$-gal-positive cells number, increased nuclear size and increased senescence-associated secretory phenotypes (SASP) such as IL-6. We also observed a decreased expression of cell cycle markers, including PhosphoHistone H3/Histone H3 and CDK2, and dysregulation of cellular functions based on wound-healing, neuronal protection, and phagocytosis assays. Finally, mitochondrial dysfunction was noted through the determination of mitochondrial membrane potential using tetramethylrhodamine methyl ester (TMRM) and the measurement of mitochondrial oxygen consumption rate (OCR). These data suggest that etoposide can induce cellular senescence and mitochondrial dysfunction in astrocytes which may have implications in brain aging and neurodegenerative conditions.

Construction of Yeast Strain Suitable for Bioethanol Production by Using Fusion Method (융합법을 이용한 바이오에탄올 생산에 적합한 효모균주의 구축)

  • Kim, Yeon-Hee
    • Journal of Life Science
    • /
    • v.29 no.3
    • /
    • pp.376-381
    • /
    • 2019
  • To construct useful yeast strain for bioethanol production, we improved yeast harboring various phenotypes by using yeast protoplast fusion method. In this study, S. cerevisiae BYK-F11 strain which have ethanol tolerance, thermotolerance and ${\beta}-glucanase$ activity and P. $stipitis{\Delta}ura$ strain which has xylose metabolism pathway were fused by genome shuffling. P. $stipitis{\Delta}ura$ strain was constructed for protoplast fusion by URA3 gene disruption, resulting in uracil auxotroph. By protoplast fusion, several fused cells were selected and BYKPS-F8 strain (fused cell) showing both karyotypes from two parent strains (S. cerevisiae BYK-F11 and P. $stipitis{\Delta}ura$ strain) among 22 fused cells was finally selected. Sequentially, various phenotypes such as ${\beta}-glucanase$ activity, xylose utility, ethanol tolerance, thermotolerance and ethanol productivity were analyzed. The BYKPS-F8 strain obtained ${\beta}-glucanase$ activity from BYK-F11 strain and 1.2 fold increased xylose utility from P. $stipitis{\Delta}ura$ strain. Also, the BYKPS-F8 strain showed thermotolerance at $40^{\circ}C$ and increased ethanol tolerance in medium containing 8% ethanol. In this fused cell, 7.5 g/l ethanol from 20 g/l xylose was produced and the multiple phenotypes were stably remained during long term cultivation (260 hr). It was proved that novel biological system (yeast strains) is easily and efficiently bred by protoplast fusion among yeasts having different genus.

A pheromone mutant of Schizosaccharomyces pombe displays nucleolar fragmentation

  • Jun, Jai-Hyun;Kim, Dae-Myung
    • BMB Reports
    • /
    • v.41 no.3
    • /
    • pp.248-253
    • /
    • 2008
  • Stresses and nutritional starvation are two main external signals for the induction of sex pheromones in the fission yeast Schizosaccharomyces pombe. In an attempt to identify the components involved in transduction of starvation signals, we screened 135 temperature-sensitive (ts) mutants and isolated 6 mutants that induced the pheromone even in the presence of a nitrogen source. These mutants exhibited two distict induction phenotypes: pheromone induction at restrictive but not at permissive temperatures; and pheromone induction at both permissive and restrictive temperatures. The times required for the maximum pheromone induction at the restrictive temperature differed slightly in each mutant. In addition to the pheromone induction phenotype, the ts243 and ts304 mutants exhibited cell-division-cycle defects. The ts304 mutant cells showed an abnormal cytoplasmic DAPI staining pattern. The nucleolus of this mutant seemed to be fragmented, a phenomenon which is typically observed in aged yeast cells. The result of our genetic analysis indicated that the pheromone induction mutants belonged to 6 separate complementation groups. We designated these mutants pws1 to pws6.

Understanding Disease Susceptibility through Population Genomics

  • Han, Seonggyun;Lee, Junnam;Kim, Sangsoo
    • Genomics & Informatics
    • /
    • v.10 no.4
    • /
    • pp.234-238
    • /
    • 2012
  • Genetic epidemiology studies have established that the natural variation of gene expression profiles is heritable and has genetic bases. A number of proximal and remote DNA variations, known as expression quantitative trait loci (eQTLs), that are associated with the expression phenotypes have been identified, first in Epstein-Barr virus-transformed lymphoblastoid cell lines and later expanded to other cell and tissue types. Integration of the eQTL information and the network analysis of transcription modules may lead to a better understanding of gene expression regulation. As these network modules have relevance to biological or disease pathways, these findings may be useful in predicting disease susceptibility.