• 제목/요약/키워드: cell phenotypes

검색결과 238건 처리시간 0.033초

CUG2 유전자에 의하여 감소된 FBXW7 E3 ligase 발현이 유사-종양줄기세포 표현형을 유도 (The Decreased Expression of Fbxw7 E3 Ligase Mediated by Cancer Upregulated Gene 2 Confers Cancer Stem Cell-like Phenotypes)

  • 야웃 낫파판;김남욱;붓루앙 파차라폰;조일래;카오윈 시리차트;고상석;강호영;정영화
    • 생명과학회지
    • /
    • 제32권4호
    • /
    • pp.271-278
    • /
    • 2022
  • 신규 종양 유전자 Cancer Upregulated Gene (CUG) 2가 어떻게 유사-종양줄기세포 표현형을 유도하는지 잘 알려져 있지 않다. Cyclin E, c-Myc, Notch, 그리고 Yap1와 같은 종양단백질를 분해하여 그 발현을 조절하는 FBXW7 E3 ligase의 발현이 대장암, 자궁경부암, 그리고 위암 등 여러 암조직에서 낮아져 있음이 보고되고 있다. 그래서 우리는 이 FBXW7 단백질이 CUG2에 의한 종양형성에 관여할 수 있다는 가설을 세웠다. 이 연구에서 우리는 각 대조구 세포주보다 CUG2가 과발현된 A549 폐암 세포주와 BEAS-2B 기관지 세포주에서 FBXW7 단백질 발현이 낮게 나왔다. 여기서 MG132를 처리하게 되면 감소된 FBXW7과 FBXW7 기질로 알려진 Yap1 단백질 발현이 증가되는 결과를 관찰하였다. 종양줄기세포 현상에서 FBXW7의 역할을 규명하기 위하여, FBXW7 siRNA를 처리하였다. 대조구 세포주에서 감소된 FBXW7의 조건은 세포 이동 침습, 그리고 구형 형성이 증가되는 종양줄기세포 현상이 촉진되는 것을 관찰하였고, CUG2가 과발현된 두 세포주에서 FBXW7 발현 벡타 도입으로 FBXW7 발현 증가는 종양줄기세포 현상이 억제됨을 알 수 있었다. 또한 FBXW7의 감소는 EGFR-Akt-ERK1/2와 β-catenin-Yap1-NEK2 신호 경로를 활성화시키고, 반대로 FBXW7 발현 증가는 이 두 경로의 활성이 억제됨을 알 수 있었다. 이들 결과를 종합해 보면, CUG2 과발현은 FBXW7의 발현 감소로 이어지고, 이는 EGFR-Akt-ERK1/2와 β-catenin-Yap1-NEK2 신호경로를 활성화시켜 유사-종양줄기세포 현상을 촉진하는 것으로 생각된다.

비만 환경 내 면역세포 활성화 표현형의 변화 (Phenotype Changes in Immune Cell Activation in Obesity)

  • 박주휘;남주옥
    • 생명과학회지
    • /
    • 제33권3호
    • /
    • pp.295-303
    • /
    • 2023
  • 면역 체계와 대사 체계는 항상성을 유지하는데 중요한 요소이다. 면역 반응과 대사 조절은 연관성이 높아, 정상적인 대사가 교란되면 대사 질환이 발생하며, 면역 반응에도 변화가 발생하였다. 마찬가지로, 비만은 면역 반응과 높은 관련이 있다. 에너지 대사의 불균형으로 발생하는 비만은 인슐린 저항성, 제2형 당뇨병, 지방간 질환, 동맥경화증, 고혈압 등의 대사 질환과 관련이 있다. 알려진 바로는, 비만은 낮은 수준의 염증이 만성화된 상태가 특징이다. 비만 환경에서, 면역세포의 미세 환경은 대식세포, 자연살해세포, T세포 같은 면역세포의 독특한 활성화 표현형에 의해 염증성이 되었다. 또한, 면역 세포는 세포 간의 기전, 사이토카인을 매개하는 기전을 통해 상호작용하여 비만으로 인한 염증 반응을 강화한다. 이러한 현상은 기존의 췌장 리파아제나 알파-아밀라아제 같은 체내 효소의 억제나 지방전구세포의 분화를 억제를 표적으로 하는 일반적인 비만의 약리학적 치료 외에 면역세포 활성화 조절을 표적으로 하는 비만의 약리학적 치료 전략을 시사한다. 본 논문에서는 대식세포, 자연살해세포, T세포의 활성화 표현형과 비만 환경 내이들의 양상에 대해 정리하였다. 또한, 본 논문에서는 현재까지 확인된 면역세포의 활성화 조절을 통한 비만을 완화하는 약리학적 물질에 대해서 정리하였다.

골막기원세포에서 strontium에 의한 조골세포 표현형의 활성 (STIMULATION OF OSTEOBLASTIC PHENOTYPES BY STRONTIUM IN PERIOSTEAL-DERIVED CELLS)

  • 김신원;김욱규;박봉욱;하영술;조희영;김정환;김덕룡;김종렬;주현호;변준호
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제32권3호
    • /
    • pp.199-206
    • /
    • 2010
  • This study investigated the effects of strontium on osteoblastic phenotypes of cultured human periostealderived cells. Periosteal tissues were harvested from mandible during surgical extraction of lower impacted third molar. Periosteal-derived cells were introduced into cell culture. After passage 3, the periostealderived cells were further cultured for 28 days in an osteogenic induction DMEM medium supplemented with fetal bovine serum, ascorbic acid 2-phosphate, dexamethasone and at a density of $3{\times}10^4$ cells/well in a 6-well plate. In this culture medium, strontium at different concentrations (1, 5, 10, and 100 ${\mu}g$/mL) was added. The medium was changed every 3 days during the incubation period. We examined the cellular proliferation, histochemical detection and biochemical measurements of alkaline phosphatase (ALP), the RT-PCR analysis for ALP and osteocalcin, and von Kossa staining and calcium contents in the periostealderived cells. Cell proliferation was not associated with the addition of strontium in periosteal-derived cells. The ALP activity in the periosteal-derived cells was higher in 5, 10, and 100 ${\mu}g$/ml strontium-treated cells than in untreated cells at day 14 of culture. Among the strontium-treated cells, the ALP activity was appreciably higher in 100 ${\mu}g$/ml strontium-treated cells than in 5 and 10 ${\mu}g$/ml strontium-treated cells. The levels of ALP and osteocalcin mRNA in the periosteal-derived cells was also higher in strontium-treated cells than in untreated cells at day 14 of culture. Their levels were increased in a dose-dependent manner. Von Kossa-positive mineralization nodules were strongly observed in the 1 ${\mu}g$/ml strontium-treated cells at day 21 and 28 of culture. The calcium content in the periosteal-derived cells was also higher in 1 ${\mu}g$/ml strontium-treated cells at day 28 of culture. These results suggest that low concentration of strontium stimulates the osteoblastic phenotypes of more differentiated periosteal-derived cells, whereas high concentration of strontium stimulates the osteoblastic phenotypes of less differentiated periosteal-derived cells. The effects of strontium on osteoblastic phenotypes of periosteal-derived cells appear to be associated with differentiation-extent.

Nicotinamide Exerts Antioxidative Effects on Senescent Cells

  • Kwak, Ju Yeon;Ham, Hyun Joo;Kim, Cheol Min;Hwang, Eun Seong
    • Molecules and Cells
    • /
    • 제38권3호
    • /
    • pp.229-235
    • /
    • 2015
  • Nicotinamide (NAM) has been shown to suppress reactive oxygen species (ROS) production in primary human fibroblasts, thereby extending their replicative lifespan when added to the medium during long-term cultivation. Based on this finding, NAM is hypothesized to affect cellular senescence progression by keeping ROS accumulation low. In the current study, we asked whether NAM is indeed able to reduce ROS levels and senescence phenotypes in cells undergoing senescence progression and those already in senescence. We employed two different cellular models: MCF-7 cells undergoing senescence progression and human fibroblasts in a state of replicative senescence. In both models, NAM treatment substantially decreased ROS levels. In addition, NAM attenuated the expression of the assessed senescence phenotypes, excluding irreversible growth arrest. N-acetyl cysteine, a potent ROS scavenger, did not have comparable effects in the tested cell types. These data show that NAM has potent antioxidative as well as anti-senescent effects. Moreover, these findings suggest that NAM can reduce cellular deterioration caused by oxidative damage in postmitotic cells in vivo.

Genetic Relationship between the SPT3 Gene and RAS/cAMP Pathway in Yeast Cell Cycle Control (Genetic relationship between the SPT3 gene and ARS/cAMP pathway in yeast cell cycle control)

  • Shin, Deug-Yong;Yun, Jean-Ho
    • Journal of Microbiology
    • /
    • 제34권2호
    • /
    • pp.158-165
    • /
    • 1996
  • The signal transduction pathways through the RAS gene product and adenyl cyclease play a critical role in regulation of the cell cycle in yeast, Saccharomyces cerevisiae. We examined the genetic relationship between the spt3 gene and ras/cAMP pathway. A mutation in the SPT3 gene suppressed cell cycle arrest at the G1 phase caused by either an inactivation of the RAS or CYR1 gene which encodes a yeast homologue of human ras proto-oncogene or adenyl cyclase, respectively. The phenotypes such as sporulation and heat shock resistancy, that resulted from a partial inactivation of the RAS or CYR1 genes, were also suppressed by the spt3 mutation. Expression of the SSA1 gene encoding one of th heat shock proteins (Hsp70) can be induced by heat shock or nitrogen starvation. Expression of this gene is derepressed in cry1-2 and spt3 mutants. The bcy 1 mutation repressed by the bcy1 mutation, but not in spt3 mutants. These results suggest that the SPT gene is involved in expression of genes that are affected by the RAS/cAMP pathway.

  • PDF

T Regulatory Cell Responses to Immunization with a Soluble Egg Antigen in $Schistosoma$ $mansoni$-Infected Mice

  • El-Ahwany, Eman;Bauiomy, Ibrahim Rabia;Nagy, Faten;Zalat, Rabab;Mahmoud, Ola;Zada, Suher
    • Parasites, Hosts and Diseases
    • /
    • 제50권1호
    • /
    • pp.29-35
    • /
    • 2012
  • The aim of the study is to characterize the phenotypes of $CD4^+$ $CD25^+$ T regulatory cells within the liver granulomas and association with both Foxp-3 gene expression and splenic cytokines. Naive C57BL/6 mice were intravenously injected with multiple doses of the soluble egg antigen (SEA) 7 days before cercarial infection. The immunized and infected control groups were sacrificed 8 and 16 weeks post-infection (PI). Histopathology, parasitological parameters, splenic phenotypes for T regulatory cells, the FOXP-3 expression in hepatic granuloma using real-time PCR, and the associated splenic cytokines were studied. Histopathological examination of the liver revealed remarkable increase in degenerated ova within hepatic granuloma which decreased in diameter at weeks 8 and 16 PI ($P$<0.01). The percentage of T regulatory cells ($CD4^+$ $CD25^+$) increased significantly ($P$<0.01) in the immunized group compared to the infected control at weeks 8 and 16 PI. The FOXP-3 expression in hepatic granulomas increased from 10 at week 8 to 30 fold at week 16 PI in the infected control group. However, its expression in the immunized group showed an increase from 30 at week 8 to 70 fold at week 16 PI. The splenic cytokine levels of pro-inflammatory cytokines, IFN-${\gamma}$, IL-4, and TNF-${\alpha}$, showed significant decreases ($P$<0.05) compared to the infected control group. In conclusion, the magnitude and phenotype of the egg-induced effects on T helper responses were found to be controlled by a parallel response within the T regulatory population which provides protection in worm parasite-induced immunopathology.

Etoposide Induces Mitochondrial Dysfunction and Cellular Senescence in Primary Cultured Rat Astrocytes

  • Bang, Minji;Kim, Do Gyeong;Gonzales, Edson Luck;Kwon, Kyoung Ja;Shin, Chan Young
    • Biomolecules & Therapeutics
    • /
    • 제27권6호
    • /
    • pp.530-539
    • /
    • 2019
  • Brain aging is an inevitable process characterized by structural and functional changes and is a major risk factor for neurodegenerative diseases. Most brain aging studies are focused on neurons and less on astrocytes which are the most abundant cells in the brain known to be in charge of various functions including the maintenance of brain physical formation, ion homeostasis, and secretion of various extracellular matrix proteins. Altered mitochondrial dynamics, defective mitophagy or mitochondrial damages are causative factors of mitochondrial dysfunction, which is linked to age-related disorders. Etoposide is an anti-cancer reagent which can induce DNA stress and cellular senescence of cancer cell lines. In this study, we investigated whether etoposide induces senescence and functional alterations in cultured rat astrocytes. Senescence-associated ${\beta}$-galactosidase (SA-${\beta}$-gal) activity was used as a cellular senescence marker. The results indicated that etoposide-treated astrocytes showed cellular senescence phenotypes including increased SA-${\beta}$-gal-positive cells number, increased nuclear size and increased senescence-associated secretory phenotypes (SASP) such as IL-6. We also observed a decreased expression of cell cycle markers, including PhosphoHistone H3/Histone H3 and CDK2, and dysregulation of cellular functions based on wound-healing, neuronal protection, and phagocytosis assays. Finally, mitochondrial dysfunction was noted through the determination of mitochondrial membrane potential using tetramethylrhodamine methyl ester (TMRM) and the measurement of mitochondrial oxygen consumption rate (OCR). These data suggest that etoposide can induce cellular senescence and mitochondrial dysfunction in astrocytes which may have implications in brain aging and neurodegenerative conditions.

융합법을 이용한 바이오에탄올 생산에 적합한 효모균주의 구축 (Construction of Yeast Strain Suitable for Bioethanol Production by Using Fusion Method)

  • 김연희
    • 생명과학회지
    • /
    • 제29권3호
    • /
    • pp.376-381
    • /
    • 2019
  • 본 연구는 에탄올내성, 내열성, ${\beta}-glucanase$ 활성 및 xylose 대사가 가능한 새로운 생물시스템을 육종하기 위해 원형질체융합(protoplast fusion)이라는 방법을 사용하여 S. cerevisiae BYK-F11 균주와 P. $stipitis{\Delta}ura$ 균주와의 genome shuffling을 시도하였다. P. $stipitis{\Delta}ura$ 균주는 URA3 유전자를 결실시켜 uracil 영양요구주로 구축되었다. Protoplast fusion을 통해 몇몇의 융합체가 선별되었고, 두 모균주인 BYK-F11 균주와 P. $stipitis{\Delta}ura$ 균주의 핵형(karyotype)를 모두 가지는 BYKPS-F8 균주가 22개의 융합체중에서 최종 선정되었다. 이어 ${\beta}-glucanase$ 활성, xylose 이용능, 에탄올내성, 내열성 및 에탄올생산성에 대한 다양한 표현형이 조사되었다. BYKPS-F8 균주는 모균주인 BYK-F11 균주가 가지는 ${\beta}-glucanase$ 활성을 가지게 되었고, P. $stipitis{\Delta}ura$ 균주가 가지는 xylose 이용능도 모균주보다 1.2배 증가되었음을 확인할 수 있었다. BYKPS-F8 균주는 $40^{\circ}C$에서 내열성을 보였으며, 8% 에탄올이 첨가된 배지에서 모균주에 비해 에탄올 내성이 증가되었음을 확인 할 수 있었다. 20 g/l의 xylose가 함유된 배지에서 72시간 배양에 의해 약 7.5 g/l의 에탄올을 생산할 수 있었으며, 260시간의 장기간의 배양에도 BYKPS-F8균주에 도입한 다형질이 안정적으로 유지됨을 확인하였다. 따라서, 본 연구에서 사용된 균주 육종방법을 통해 다형질을 가진 다른 속간의 균주 융합 및 산업적으로 유용한 생물시스템의 육종이 가능함을 확인하였다.

A pheromone mutant of Schizosaccharomyces pombe displays nucleolar fragmentation

  • Jun, Jai-Hyun;Kim, Dae-Myung
    • BMB Reports
    • /
    • 제41권3호
    • /
    • pp.248-253
    • /
    • 2008
  • Stresses and nutritional starvation are two main external signals for the induction of sex pheromones in the fission yeast Schizosaccharomyces pombe. In an attempt to identify the components involved in transduction of starvation signals, we screened 135 temperature-sensitive (ts) mutants and isolated 6 mutants that induced the pheromone even in the presence of a nitrogen source. These mutants exhibited two distict induction phenotypes: pheromone induction at restrictive but not at permissive temperatures; and pheromone induction at both permissive and restrictive temperatures. The times required for the maximum pheromone induction at the restrictive temperature differed slightly in each mutant. In addition to the pheromone induction phenotype, the ts243 and ts304 mutants exhibited cell-division-cycle defects. The ts304 mutant cells showed an abnormal cytoplasmic DAPI staining pattern. The nucleolus of this mutant seemed to be fragmented, a phenomenon which is typically observed in aged yeast cells. The result of our genetic analysis indicated that the pheromone induction mutants belonged to 6 separate complementation groups. We designated these mutants pws1 to pws6.

Understanding Disease Susceptibility through Population Genomics

  • Han, Seonggyun;Lee, Junnam;Kim, Sangsoo
    • Genomics & Informatics
    • /
    • 제10권4호
    • /
    • pp.234-238
    • /
    • 2012
  • Genetic epidemiology studies have established that the natural variation of gene expression profiles is heritable and has genetic bases. A number of proximal and remote DNA variations, known as expression quantitative trait loci (eQTLs), that are associated with the expression phenotypes have been identified, first in Epstein-Barr virus-transformed lymphoblastoid cell lines and later expanded to other cell and tissue types. Integration of the eQTL information and the network analysis of transcription modules may lead to a better understanding of gene expression regulation. As these network modules have relevance to biological or disease pathways, these findings may be useful in predicting disease susceptibility.