• Title/Summary/Keyword: cell permeability

Search Result 604, Processing Time 0.029 seconds

Comparison of Caco-2 and MDCK Cells As an In-Vitro ADME Screening Model (In-Vitro 흡수특성 검색모델로서 Caco-2 및 MDCK 세포배양계의 특성 비교 평가)

  • Go, Woon-Jung;Cheon, Eun-Pa;Han, Hyo-Kyung
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.3
    • /
    • pp.183-189
    • /
    • 2008
  • The present study compared the feasibility of Caco-2 and MDCK cells as an efficient in-vitro model for the drug classification based on Biopharmaceutics Classification System (BCS) as well as an in-vitro model for drug interactions mediated by P-gp inhibition or P-gp induction. Thirteen model drugs were selected to cover BCS Class I{\sim}IV$ and their membrane permeability values were evaluated in both Caco-2 and MDCK cells. P-gp inhibition studies were conducted by using vinblastine and verapamil in MDCK cells. P-gp induction studies were also performed in MDCK cells using rifampin and the P-gp expression level was determined by western blot analysis. Compared to Caco-2 cells, MDCK cells required shorter period of time to culture cells before running the transport study. Both Caco-2 and MDCK cells exhibited the same rank order relationship between in-vitro permeability values and human permeability values of all tested model compounds, implying that those in-vitro models may be useful in the prediction of human permeability (rank order) of new chemical entities at the early drug discovery stage. However, in the case of BCS drug classification, Caco-2 cells appeared to be more suitable than MDCK cells. P-gp induction by rifampin was negligible in MDCK-cells while MDCK cells appeared to be feasible for P-gp inhibition studies. Taken all together, the present study suggests that Caco-2 cells might be more applicable to the BCS drug classification than MDCK-cells, although MDCK cells may provide some advantage in terms of capacity and speed in early ADME screening process.

Leakage of Cellular Materials from Saccharomyces cerevisiae by Ohmic Heating

  • Yoon, Sung-Won;Lee, Chung-Young-J.;Kim, Ki-Myung;Lee, Cherl-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.183-188
    • /
    • 2002
  • The ohmic heating of foods for sterilization provides a shorter come-up time compared to conventional thermal processes. The electric fields as well as the heat generated by ohmic heating facilitate germicidal effects. In the present study, the effect of ohmic heating on the structure and permeability of the cell membrane of yeast cells, Saccharomyces cerevisae, isolated from Takju (a traditional Korean rice-beer), was investigated. The ohmic heating was found to translocate intracellular protein materials out of the cell wall, and the amount of exuded protein increased significantly as the electric field increased from 10 to 20 V/cm. As higher frequencies were applied, more materials were exuded. Compared to conventional heating, more amounts of proteins and nucleic acids were exuded when these cells were treated with ohmic heating. The molecular weights of the major exuded proteins ranged from 14 kDa to 18 kDa, as analyzed by Tricine-SDS PAGE. A TEM study also confirmed the leakage of cellular materials, thus indicating irreversible damage to the cell wall by ohmic heating. It was, therefore, concluded that the electric fields generated by ohmic heating induced electroporation, causing irreversible damage to the yeast cell wall and promoting the translocation of intracellular materials.

Permeation Characteristics of Transdermal Preparations Containing Artemisiae Capillaris Herba in Franz Diffusion Cell (Franz Diffusion Cell을 이용한 인진호 함유 경피제의 피부투과 특성 연구)

  • Kim, Eun-Nam;Park, Kyo-Hyun;Kim, Bae-Hwan;Jeong, Gil-Saeng
    • Korean Journal of Pharmacognosy
    • /
    • v.49 no.2
    • /
    • pp.165-171
    • /
    • 2018
  • Artemisiae Capillaris Herba is a dried aerial part of Asteraceae capillaris Thunb.(Compositae), which has been used in Korean traditional medicine for the treatment of various diseases. It has a variety of pharmacological activities and has been evaluated for potential as an active ingredient in cosmeceutical products. In the cosmetics industry, animal experiments is besides the major concern of ethics, there are few more disadvantages of animal experimentation like demand of skilled manpower, time consuming protocols and high cost. Therefore, various alternatives to animal experiments have been proposed. The purpose of this study was to investigate the skin permeation characteristics of chlorogenic acid and dimethyleculetin, which are constituent of Artemisiae Capillaris Herba by using Franz diffusion cell. As a result, skin permeability was characterized by flux(penetration rates) and $K_p$(permeability coefficient) value, chlorogenic acid had lower flux and $K_p$ than dimethylesculetin. According to the definitions of Marzulli, chlorogenic acid and dimethylesculetin would be classified as 'Moderate' and 'Very fast' respectively. In conclusion, skin permeation characteristics of chlorogenic acid and dimethylesculetin were confirmed through Franz diffusion cell, and suggests the direction of alternative method for skin permeation of natural compounds.

Effects of Fermented Soybean upon Anti-inflammation and Intestinal Mucous Membrane Permeability (청국장의 항염증 및 장점막 투과성 개선 효과)

  • Kim, Hyung-Gu;Lee, Myeong-Jong;Kim, Ho-Jun;Kim, Ki-Cheol;Bose, Shambhunath
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.12 no.1
    • /
    • pp.33-47
    • /
    • 2012
  • Objectives This study was designed to investigate the effects of fermented soybean upon anti-inflammation, cytotoxicity, antioxidant and intestinal mucous membrane permeability by measuring the cell viability, NO (nitric oxide) production, DPPH, Polyphenol, HRP and TEER in cells like Raw 264.7 and HCT 116 using fermented soybean. Methods Raw 264.7 cell and HCT 166 cell were used in this study. And fermented soybean powders were used for the experimental group and soybean powders for the control group. There was inflammation response upon using lipopolysaccharide(LPS). Fermented soybean powders and soybean powders were in a respectively different dose added to the cells with LPS. MTT assay, NO, DPPH and Polyphenol measurement, TEER, HRP were conducted for each cell. The results of this study were presented in mean and standard deviation. Results 1. In Raw 254.7 cells added with $100{\mu}l/ml$ unfermented soybean powders, 104.95% higher than 62.59% was measured. In Raw 254.7 cells added with $100{\mu}l/ml$ fermented soybean powders, there was 74.90% measured higher than 62.59%, which was a significant result. 2. By a gradual increase of unfermented soybean powders like $0.1{\mu}l/ml$, $1.0{\mu}l/ml$, $10{\mu}l/ml$, $100{\mu}l/ml$, the measured NO were also gradually decreased $53.12{\mu}M$, $47.57{\mu}M$, $37.02{\mu}M$, $28.16{\mu}M$. In case of cells added with fermented soybean powders, $43.95{\mu}M$ NO was measured in $0.1{\mu}l/ml$ which is significant, and in other cases, mostly measured over$ 56.72{\mu}M$. 3. It was inferred that fermented soybean powders have anti-inflammatory effects of maintaining intestinal mucous membrane permeability because the measured values of cells in both groups were all higher than $133.62{\Omega}$ measured of cells added with only LPS. And measured values of cells in both groups were all lower than 2.26 measured of cells added with only LPS. 4. In case of experiment DPPH and polyphenol measurement, fermented group was all higher than unfermented group. Conclusion From the results of conducting MTT assay, NO measurement, and TEER, HRP by using cells Raw 264.7 and HCT-116, even though there was no significance in the correlation between cytotoxicity, anti-inflammatory effects, both unfermented soybean powders and fermented soybean powders were shown to have intestinal mucous membrane permeability improvement effects. This effects could be applicable for autoimmune diseases, chronic inflammatory diseases and so additional studies are expected in the future. From the results of conducting DPPH, Polyphenol measurement, Fermented soybean may be useful as potential antioxidant.

Enhanced Production of hCTLA4Ig through Increased Permeability in Transgenic Rice Cell Cultures (형질전환 벼 현탁세포 배양에서 투과성 증진을 통한 hCTLA4Ig의 생산성 증대)

  • Choi, Hong-Yeol;Cheon, Su-Hwan;Kwon, Jun-Young;Lim, Jung-Ae;Park, Hye-Rim;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.31 no.4
    • /
    • pp.277-283
    • /
    • 2016
  • In this system, rice cells were genetically modified to express human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig) using RAmy3D promoter induced by sugar depletion. Even though the target protein fused with signal sequence peptide, plant cell wall can be a barrier against secretion of recombinant proteins. Therefore, hCTLA4Ig can be trapped inside cell wall or remained in intracellular space. In this study, to enhance the secretion of hCTLA4Ig from cytoplasm and cell walls into the medium, permeabilizing agents, such as dimethyl sulfoxide (DMSO), Triton X-100 and Tween 20, were applied in transgenic rice cell cultures. When 0.5% (v/v) of DMSO was added in sugar-free medium, intracellullar hCTLA4Ig was increased, on the other hand, the secreted extracellular hCTLA4Ig was lower than that of control. DMSO did not give permeable effects on transgenic rice cell cultures. And Triton X-100 was toxic to rice cells and also did not give enhancing permeability of cells. When 0.05% (v/v) Tween 20 was added in rice cell cultures, however, intracellular hCTLA4Ig was lower than that of control cultures. And the maximum 44.76 mg/L hCTLA4Ig was produced for 10 days after induction, which was 1.4-fold increase compared to that of control cultures. Especially, Tween 20 at 0.05% (v/v) showed the positive effect on the secretion of hCTLA4Ig though the decrease of intracellular hCTLA4Ig. Also, Tween 20 as a non-toxic surfactant did not affect the cell growth, cell viability and protease activity. In conclusion, secretion of hCTLA4Ig could be increased by enhancing permeability of cells regardless of the cell growth, cell viability and protease activity.

MR Study of Wate Exchange and Cell Membrane Permeability in Rat Liver Cells Using a Tissue-Specific MR Contrast Agent (조직 특성 MR 조영제를 이용한 쥐의 간세포막의 물분자 교환 및 투과율의 MR 측정기법)

  • Yongmin Chang
    • Investigative Magnetic Resonance Imaging
    • /
    • v.2 no.1
    • /
    • pp.73-82
    • /
    • 1998
  • Purpose : A precise NMR technique for measuring the rate of water exchange and cell membrane permeability across the hepatocyte membrane using liver-specific MR contrast agent is described. Materials and Methods : The rat hepatocytes isolated by perfusion of the livers were used for the NMR measurements. All experiments were performed on an IBM field cycling relaxometer operating from 0.02MHz to 60 MHz proton Larmor frequency. spin-echo pulse sequence was empolyed to measure spin-lattice relaxation time, T1. The continuous distribution analysis of water proton T1 data from rat hepatocytes containing low concentrations of the liver specific contrast agent, Gd-EOB-DTPA, modeled by a general two compartment exchange model. Results : The mean residence time of water molecule inside the hepatocyte was approximately 250 msec. The lower limit for the permeability of the hepatocyte membrane was $(1.3{\pm}0.1){\;}{\times}{\;}10^{-3}cm/sec$. The CONTIN analysis, which seeks the natural distribution of relaxation times, reveals direct evidence of the effect of diffusive exchange. the diffusive water exchange is not small in the intracellular space in the case of hepatocytes. Conclusions : Gd-EOB-DTPA, when combined with continuous distribution analysis, provides a robust method to study water exchange and membrane permeability in hepatocytes. Water exchange in hepatocyte is much slower thatn that in red blood cells. Therefore, tissue-specific contrast agent may be used as a functional agent to give physiological information such as cell membrane permeability.

  • PDF

Killing Effects of Different Physical Factors on Extracorporeal HepG2 Human Hepatoma Cells

  • Zhang, Kun-Song;Zhou, Qi;Wang, Ya-Feng;Liang, Li-Jian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.3
    • /
    • pp.1025-1029
    • /
    • 2012
  • Objective: To determine the killing effects on extracorporeal HepG2 cells under different temperatures, pressures of permeability and lengths of treatment time. Method: According to different temperatures, pressures of permeability and lengths of treating time, extracorporeal HepG2 cells of human hepatoma cell-line were grouped to 80 groups. Cell index (CI) as the measurement of killing effect were calculated by monotetrazolium (MTT) methods, i.e., CI =1- (the OD value in treated group - the OD value in blank control group) / (mean of untreated control group - mean of blank control group). According to the factorial design, data were fed into SPSS 10.0 and analyzed by three-way ANOVA (analysis of variance). Result: Temperature, pressure of permeability and length of treating time all had effects on the CI (cell index) level. Length of treating time was the most influential factor of the three. Additionally, any two of them all had statistically significant interactive effects on the CI level. When treated for 5-30 min, destilled water at $46^{\circ}C$ stably generated the highest CI. Conclusion: The "$46^{\circ}C$-destilled water-60 min" was considered as the optimal combination of conditions which lead to highest CI. We suggest exerting celiac lavage for 15 min with stilled water at $40^{\circ}C-43^{\circ}C$ in surgical practice as a hyperthermia treatment to achieve ideal killing effects on free cancer cells, which is feasible, practical, and clinically effective.

Effect of Layer-by-Layer (LbL) Encapsulation of Nano-Emulsified Fish Oil on Their Digestibility Ex Vivo and Skin Permeability In Vitro

  • Jung, Eun Young;Hong, Ki Bae;Son, Heung Soo;Suh, Hyung Joo;Park, Yooheon
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.2
    • /
    • pp.85-89
    • /
    • 2016
  • Omega-3 rich fish oils are extremely labile, thus requiring control of oxidation and off flavor development. A recently proposed emulsification method, layer-by-layer (LbL) deposition, was found to be a plausible method to enhance the characteristics of bioactive ingredients, especially lipids. The present work was designed to test the possibility of enhancing the uptake and utilization of omega-3 fatty acids present in fish oil. The bioavailability of nano-emulsified fish oil was monitored in terms of intestinal absorption as well as skin permeability by using the everted intestinal sac model and Franz cell model. The skin permeability and intestinal absorption characteristics was significantly improved by LbL emulsification with lecithin/chitosan/low methoxypectin. Multilayer encapsulation along with nano-emulsification can be a useful method to deliver biologically active lipids and related components, such as fish oil. The protective effect of this tool from lipid oxidation still needs to be verified.

Permeability Control of Cellulose Hydrogel Membrane Using Alginate (알지네이트를 이용한 셀룰로오스 하이드로겔의 투과 특성 제어)

  • Jeong, Eunsue;Shin, Sungchul;Park, Minsung;Hyun, Jinho
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.2
    • /
    • pp.17-23
    • /
    • 2015
  • Natural cellulose hydrogel membrane cannot be directly used for cell encapsulation because it has many large pores on the surface that immune biomolecules are able to penetrate into easily. For the reason, alginate was used for the control of pore size of the cellulose hydrogel membrane. The surface morphology of cellulose/alginate nanocomposite confirmed the successful control of the porosity of the membrane. The permeability of the cellulose/alginate nanocomposite was decreased but mechanical properties were increased compared with the bacterial cellulose membrane. The cellulose/alginate nanocomposite could be used for the functional membrane as a promising biomedical material in the future.

The Effect of Enhancers on the Penetration of Clenbuterol through Hairless Mouse Skin (클렌부테롤의 피부투과에 미치는 경피흡수촉진제의 영향)

  • Choi, Han-Gon;Rhee, Jong-Dal;Yu, Bong-Kyu;Yong, Chul-Soon
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.1
    • /
    • pp.29-36
    • /
    • 2003
  • Clenbuterol, a selective ${\beta}_2-adrenergic$ receptor stimulant, has been introduced as a potent bronchodilator for patients with bronchial asthma, chronic obstructive bronchial disease, chronic bronchitis and pulmonary emphysema. The percutaneous permeation of clenbuterol was investigated in hairless mouse skin after application of 50/50 buffer(pH 10)/propylene glycol solvent mixture. The enhancing effects of various penetration enhancers such as terpenes, non-ionic surfactants, pyrrolidones, fatty acids and some other enhancers on the permeation of clenbuterol were evaluated using Franz diffusion cell. Among terpenes studied, 1,8-cineole was the most effective enhancer, which increased the permeability of clenbuterol approximately 39.33-fold compared with the control without penetration enhancer, followed by menthone with enhancement ratio of 23.57. Nonionic surfactants did not have significant enhancing effects. N-Lauryl-2-pyrrolidone increased the permeability of clenbuterol approximately 4.51-fold compared with the control. Lauric acid increased the permeability of clenbuterol approximately 35.57-fold with decreasing the lag time from 2.64 to 0.52 hr. Oleic acid, linoleic acid, linolenic acid and capric acid showed enhancement ratio of 22.62, 19.60, 17.45 and 16.51, respectively. $Labrafil^{\circledR}$ enhanced the permeability of clenbuterol 9.24-fold compared with that without enhancer.