• Title/Summary/Keyword: cell permeability

Search Result 604, Processing Time 0.025 seconds

The Protective Effects of Seokchangpowonji-san on $H_2O_2$-Mediated Cell Death of Neuro 2A as an Alzheimer Model System (산화적 손상에 의한 Neuro 2A 치매모델에서 석창포원지산의 방어효과)

  • Yim Jun-Mo;Lee Min-Goo;Yun Jong-Min;Lee In;Moon Byung-Soon
    • The Journal of Korean Medicine
    • /
    • v.26 no.1 s.61
    • /
    • pp.161-173
    • /
    • 2005
  • Objective : The water extract of Seokchangpowonji-san (SWS) has traditionally been used for treatment of dementia in oriental medicine. However, little is known about the mechanism by which the water extract of SWS rescues cells from neurodegenerative disease such as Alzheimer's disease. Methods & Results: This study was designed to investigate the protective mechanisms of SWS on $\beta-amyloid$ or $H_2O_2$-induced$ cytotoxicity in neuro 2A cells. $H_2O_2$ markedly decreased the viability of neuro 2A cells, which was characterized by apparent apoptotic features such as membrane blebbing as well as fragmentation of genomic DNA and nuclei. However, the water extract of SWS significantly reduced $H_2O_2-induced$ cell death and apoptotic characteristics through reduction of intracellular peroxide generation. Also, the. extract prevented the mitochondrial dysfunction including the disruption of mitochondria membrane permeability transition (MPT) and the modulation in expression of Bcl-2 family proteins in $H_2O_2­treated$ neuro 2A cells. Furthermore, pretreatment with SWS inhibited the activation of caspase-3, and in turn, degradation of ICAD/DFF45 was completely abolished in $H_2O_2-treated$ cells. Conclusion: Taken together, the data suggest that the protective effects of the water extract of SWS against $\beta-amyloid$ induced oxidative injuries may be achieved through modulation of mitochondrial dysfunction.

  • PDF

Combination of Epstein-Barr Virus-Based Plasmid and Nonviral Polymeric Vectors for Enhanced and Prolonged Gene Expression

  • Choi, Hye;Park, Key Sun;Bae, Seon Joo;Song, Su Jeong;Kim, Kyoon Eon;Park, Jong-Sang;Choi, Joon Sig
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3676-3680
    • /
    • 2012
  • An Epstein-Barr virus (EBV)-based plasmid contains the EBV nuclear antigen 1 (EBNA1) gene and EBV replication origin (oriP) sequence. Since EBNA1 (the only EBV-encoded protein) is combined with oriP, it is replicated simultaneously with chromosomal DNA in human, primate, and canine cells and is faithfully segregated at a stable copy number upon cell division. Consequently, it can be used to stably express gene inserts over a prolonged time in target cells. We have previously shown that the polyamidoamine (PAMAM) dendrimer can be surface-modified with L-arginine. Arginine is present at a high frequency in the transactivator of transcription (Tat) sequences of human immunodeficiency virus (HIV). It presents high membrane permeability and permits effective transfer of DNA inside the cells. In this study, we constructed two kinds of recombinant DNA by inserting the luciferase gene and enhanced green fluorescence protein (eGFP) gene as reporter genes into the pCEP4 plasmid vector. We measured dynamic light scattering (DLS) and zeta potential after preparing PAMAM-based cationic polymer/EBV-based plasmid complexes. We performed transfection of HEK 293 cell lines with the polyplexes, and monitored luciferase activity and green fluorescence protein (GFP) expression. Our results show that PAMAM-based cationic polymer/EBV plasmid complexes provide enhanced and sustained gene expression.

Proteomic Analysis of Rat PC12 Cells Exposed to Cyclosporin A

  • Jung, Ji-Yeon;Seol, Kwang;Jeong, Yeon-Jin;Kim, Won-Jae;Oh, Sang-Jin
    • International Journal of Oral Biology
    • /
    • v.34 no.1
    • /
    • pp.29-36
    • /
    • 2009
  • Cyclosporin A (CsA) has been used clinically as an immunosuppressive drug to prevent organ transplant rejection and in basic research as a mitochondrial permeability blocker. It has been reported that CsA has a protective role in severed neurons and a neurotrophic effect in neuronal cells. However, the molecular mechanisms underlying the stimulation of neuronal cell proliferation by CsA have not yet been elucidated. In our current study, we investigated CsA responsive proteins in PC12 cells using a systematic proteomic approach. The viability of these cells following CsA treatment increased in a dose- and time-dependent manner. Proteins in the CsA-treated PC12 cells were profiled by two-dimensional gel electrophoresis (2-DE) and identified by matrix-assisted laser desorption ionization time-of flight (MALDI-TOF) and electrospray ionization quadupole time-of-flight mass spectrometries (EIQ-TOFMS). This differential expression analysis showed significant changes for 10 proteins (6 up-regulated and 4 down-regulated) upon CsA treatment that were related to cell proliferation, metabolism and the stress response. These proteomics data further our understanding of the proliferation mechanisms of PC12 cells exposed to CsA and demonstrate that our methodology has potential to further elucidate the mechanisms and pathways involved.

Influence of Heating, Cooling and Acidity on the Permeability of the Rabbit Erythrocyte Membrane (고온, 한냉 및 산도가 토끼 적혈구막 투과성에 미치는 영향)

  • Lee, D.S.;Shin, H.S.;Hwang, E.R.;Choi, D.K.
    • The Korean Journal of Physiology
    • /
    • v.1 no.2
    • /
    • pp.151-156
    • /
    • 1967
  • Outward movement of hemoglobin and $K^+$ ion across rabbit erythrocyte membrane after heating, cooling and in acid medium was studied. One milliliter of rabbit blood was centrifuged and packed red cells were obtained. Packed red cells were resuspended by addition of 4 ml of 0.9% NaCl solution and were subjected to heating $(57^{\circ}C\;for\;5\;minutes)$ or cooling $(-4^{\circ}C{\sim}-8^{\circ}C\;of\;-10^{\circ}C{\sim}-11^{\circ}C\;for\;10\;minutes) $. For acid medium experiment packed ref cells were resuspended by addition of 4 ml of acid medium of PH 4.5 consisting of 0.01% glacial acetic acid in 0.85% NaCl solution and kept standing for 10 minutes. All red cell suspensions were centrifuged again and packed red cells were separated. This packed red cells were again suspended in 4 ml of NaCl solution of 0.8%, 0.7%, 0.6%, and 0.5% concentration respectively and kept standing for 20 minutes. The concentration of hemoglobin and $K^+$ in the supernatant of the above red cell suspensions were measured and the following results were obtained. 1. Outward movement of hemoglobin and $K^+$ was greatest in red cells subjected to heating. The movement paralled to the osmolal concentration gradient between extra- and intra-cellular phase of red cells. 2. In acid medium the outflux of hemoglobin and $K^+$ increased as compared to the control. 3. In red cells subjected to the cold of $-10^{\circ}C{\sim}-11^{\circ}C$ the outflux of hemoglobin and $K^+$ increased. Whereas in the environment of $-4^{\circ}C{\sim}-8^{\circ}C$ there was no change in the outflux of $K^+$. The he-moglobin outflux showed rather a decreased as compared to tile control.

  • PDF

Preparation and Characterization of the Impregnation to Porous Membranes with PVA/PSSA-MA for Fuel Cell Applications (연료전지 응용을 위한 다공성막에 친수성 고분자의 함침을 통한 고내구성 이온교환막의 제조 및 특성 연구)

  • Lee, Bo-Sung;Jung, Sun-Kyoung;Rhim, Ji-Won
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.296-301
    • /
    • 2011
  • This study focuses on the investigation of the impregnation of poly (vinyl alcohol) (PVA) crosslinked with poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA) to porous polyethylene membrane for the fuel cell application. The membranes were characterized by the measurements of the water content, contact angle, FTIR spectra, thermal gravimetric analysis, ion exchange capacity, proton conductivity, methanol permeability and elastic modulus. The existence of hydrophilic moieties in the impregnated membranes was confirmed by contact angle and FTIR measurements. The impregnated PVA/PSSAMA(90:10) membrane exhibited a higher ion exchange capacity (1.2 meq./g dry membrane) than Nafion membrane (0.91 meq./g dry membrane). Through the elastic modulus measurement, the dimensional stability of the resulting membranes was expected to increase higher than the polyethylene membranes. The methanol crossover and water content decreased even if the PSSA-MA content increased due to the reduction of the free volume.

Fabrication of Ex vivo Cornea Model for a Drug Toxicity Evaluation (약물 독성 평가용 생체외 각막 모델 제작 연구)

  • Kim, Seon-Hwa;Park, Sang-Hyug
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.5
    • /
    • pp.143-150
    • /
    • 2019
  • To evaluate the toxicity of ophthalmic drug, the Draize test and Bovine Corneal Opacity and Permeability (BCOP) test commonly used. In Draize test, experimental animals were under stress and pain due to long-term exposure of drug. In addition, regarding physiological functions, animal model is not perfectly reflected a human eye condition. Although some models such as $EpiOcular^{TM}$, HCE model, LabCyte Cornea-Model, and MCTT $HCE^{TM}$ were already presented advanced cornea ex-vivo model to replace animal test. In this sense, cornea tissue structure mimicked ex-vivo toxicity model was fabricated in this study. The corneal epithelial cells (CECs) and keratocytes (CKs) isolated from rabbit eyeball were seeded on non-patterned silk film (n-pSF) and patterned silk film (pSF) at $32,500cells/cm^2$ and $6,500cells/cm^2$. Sequentially, n-pSF and pSF were stacked to mimic a multi-layered stroma structure. The thickness of films was about $15.63{\mu}m$ and the distance of patterns was about $3{\mu}m$. H&E stain was performed to confirm the cell proliferation on silk film. F-actin of CKs was also stained with Phalloidin to observe the cytoskeletal alignment along with patterns of the pSF. In the results, CECs and CKs were shown the good cell attachment on the n-pSF and pSFs. Proliferated cells expressed the specific phenotype of cornea epithelium and stroma. In conclusion, we successfully established the ex-vivo cornea toxicity model to replace the eye irritation tests. In further study, we will set up the human ex-vivo cornea toxicity model and then will evaluate the drug screening efficacy.

Transcriptome sequencing revealed the inhibitory mechanism of ketoconazole on clinical Microsporum canis

  • Wang, Mingyang;Zhao, Yan;Cao, Lingfang;Luo, Silong;Ni, Binyan;Zhang, Yi;Chen, Zeliang
    • Journal of Veterinary Science
    • /
    • v.22 no.1
    • /
    • pp.4.1-4.13
    • /
    • 2021
  • Background: Microsporum canis is a zoonotic disease that can cause dermatophytosis in animals and humans. Objectives: In clinical practice, ketoconazole (KTZ) and other imidazole drugs are commonly used to treat M. canis infection, but its molecular mechanism is not completely understood. The antifungal mechanism of KTZ needs to be studied in detail. Methods: In this study, one strain of fungi was isolated from a canine suffering with clinical dermatosis and confirmed as M. canis by morphological observation and sequencing analysis. The clinically isolated M. canis was treated with KTZ and transcriptome sequencing was performed to identify differentially expressed genes in M. canis exposed to KTZ compared with those unexposed thereto. Results: At half-inhibitory concentration (½MIC), compared with the control group, 453 genes were significantly up-regulated and 326 genes were significantly down-regulated (p < 0.05). Quantitative reverse transcription polymerase chain reaction analysis verified the transcriptome results of RNA sequencing. Gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that the 3 pathways of RNA polymerase, steroid biosynthesis, and ribosome biogenesis in eukaryotes are closely related to the antifungal mechanism of KTZ. Conclusions: The results indicated that KTZ may change cell membrane permeability, destroy the cell wall, and inhibit mitosis and transcriptional regulation through CYP51, SQL, ERG6, ATM, ABCB1, SC, KER33, RPA1, and RNP genes in the 3 pathways. This study provides a new theoretical basis for the effective control of M. canis infection and the effect of KTZ on fungi.

Anti-inflammatory effect of Lycium barbarum on polarized human intestinal epithelial cells

  • Lee, So-Rok;Hwang, Hye-Jeong;Yoon, Ju-Gyeong;Bae, Eu-Young;Goo, Kyo-Suk;Cho, Sang-Joon;Cho, Jin Ah
    • Nutrition Research and Practice
    • /
    • v.13 no.2
    • /
    • pp.95-104
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Inflammatory Bowel Disease (IBD) has rapidly escalated in Asia (including Korea) due to increasing westernized diet patterns subsequent to industrialization. Factors associated with endoplasmic reticulum (ER) stress are demonstrated to be one of the major causes of IBD. This study was conducted to investigate the effect of Lycium barbarum (L. barbarum) on ER stress. MATERIALS/METHODS: Mouse embryonic fibroblast (MEF) cell line and polarized Caco-2 human intestinal epithelial cells were treated with crude extract of the L. chinense fruit (LF). Paracellular permeability was measured to examine the effect of tight junction (TJ) integrity. The regulatory pathways of ER stress were evaluated in MEF knockout (KO) cell lines by qPCR for interleukin (IL) 6, IL8 and XBP1 spliced form (XBP1s). Immunoglobulin binding protein (BiP), XBP1s and CCAAT/enhancer-binding homologous protein (CHOP) expressions were measured by RT-PCR. Scanning Ion Conductance Microscopy (SICM) at high resolution was applied to observe morphological changes after treatments. RESULTS: Exposure to LF extract strengthened the TJ, both in the presence and absence of inflammation. In polarized Caco-2 pretreated with LF, induction in the expression of proinflammatory marker IL8 was not significant, whereas ER stress marker XBP1s expression was significantly increased. In wild type (wt) MEF cells, IL6, CHOP and XBP1 spliced form were dose-dependently induced when exposed to $12.5-50{\mu}g/mL$ extract. However, absence of XBP1 or $IRE1{\alpha}$ in MEF cells abolished this effect. CONCLUSION: Results of this study show that LF treatment enhances the barrier function and reduces inflammation and ER stress in an $IRE1{\alpha}$-XBP1-dependent manner. These results suggest the preventive effect of LF on healthy intestine, and the possibility of reducing the degree of inflammatory symptoms in IBD patients.

Polymer Electrolyte Membranes of Poly(Styrene-Butadiene-Styrene) Star Triblock Copolymer for Fuel Cell (연료전지용 Poly(Styrene-Butadiene-Styrene) Star Triblock Copolymer의 고분자 전해질 분리막)

  • Garcia, Edwin D.;Jung, Bumsuk
    • Membrane Journal
    • /
    • v.29 no.5
    • /
    • pp.252-262
    • /
    • 2019
  • A sulfonated star branched poly(styrene-b-butadiene-b-styrene) triblock copolymer (SSBS) was synthesized with varying degrees of sulfonation. The effective sulfonation on the butadiene block was confirmed by FT-IR spectroscopy. Ion exchange capacity by titration was used to determine the degree of sulfonation. The synthesized polymer observed enhanced water uptake and proton conductivity. At room temperature, the SSBS with 25 mol% degree of sulfonation showed an outstanding proton conductivity of 0.114 S/cm, similar to that of commercial membrane, Nafion. The effect of temperature at constant relative humidity on conductivity resulted to a remarkable increase in proton conductivity. Methanol permeability studies showed a value lower than Nafion for all the sulfonated membranes. Structural nature observed using AFM showed that the membranes observed microphase separated nanostructures and the connectivity of the interionic channels.

The Water-Soluble Chitosan Derivative, N-Methylene Phosphonic Chitosan, Is an Effective Fungicide against the Phytopathogen Fusarium eumartii

  • Mesas, Florencia Anabel;Terrile, Maria Cecilia;Silveyra, Maria Ximena;Zuniga, Adriana;Rodriguez, Maria Susana;Casalongue, Claudia Anahi;Mendieta, Julieta Renee
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.533-542
    • /
    • 2021
  • Chitosan has been considered an environmental-friendly polymer. However, its use in agriculture has not been extended yet due to its relatively low solubility in water. N-Methylene phosphonic chitosan (NMPC) is a water-soluble derivative prepared by adding a phosphonic group to chitosan. This study demonstrates that NMPC has a fungicidal effect on the phytopathogenic fungus Fusarium solani f. sp. eumartii (F. eumartii) judged by the inhibition of F. eumartti mycelial growth and spore germination. NMPC affected fungal membrane permeability, reactive oxygen species production, and cell death. Also, this chitosan-derivative exerted antifungal effects against two other phytopathogens, Botrytis cinerea, and Phytophthora infestans. NMPC did not affect tomato cell viability at the same doses applied to these phytopathogens to exert fungicide action. In addition to water solubility, the selective biological cytotoxicity of NMPC adds value in its application as an antimicrobial agent in agriculture.