Browse > Article

Preparation and Characterization of the Impregnation to Porous Membranes with PVA/PSSA-MA for Fuel Cell Applications  

Lee, Bo-Sung (Department of Chemical Engineering, Hannam University)
Jung, Sun-Kyoung (Department of Chemical Engineering, Hannam University)
Rhim, Ji-Won (Department of Chemical Engineering, Hannam University)
Publication Information
Polymer(Korea) / v.35, no.4, 2011 , pp. 296-301 More about this Journal
Abstract
This study focuses on the investigation of the impregnation of poly (vinyl alcohol) (PVA) crosslinked with poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA) to porous polyethylene membrane for the fuel cell application. The membranes were characterized by the measurements of the water content, contact angle, FTIR spectra, thermal gravimetric analysis, ion exchange capacity, proton conductivity, methanol permeability and elastic modulus. The existence of hydrophilic moieties in the impregnated membranes was confirmed by contact angle and FTIR measurements. The impregnated PVA/PSSAMA(90:10) membrane exhibited a higher ion exchange capacity (1.2 meq./g dry membrane) than Nafion membrane (0.91 meq./g dry membrane). Through the elastic modulus measurement, the dimensional stability of the resulting membranes was expected to increase higher than the polyethylene membranes. The methanol crossover and water content decreased even if the PSSA-MA content increased due to the reduction of the free volume.
Keywords
impregnation; poly(vinyl alcohol); poly (styrene sulfonic acid-co-maleic acid); polymer electrolyte membrane; methanol crossover;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 K. Furukawa, K. Okajima, and M. Sudoh, J. Power Sources, 139, 9 (2005).   DOI
2 X. Ren, P. Zelency, S. Thomas, J. Davey, and S. Gottesfeld, J. Power Sources, 86, 111 (2000).   DOI   ScienceOn
3 L. Carrette, K. A. Friedrich, and U. Stimming, Fuel cellsfundamentals and application, Fuel Cell, Germany, Vol 1, p 5 (2001).
4 C. Lamy, J.-M. Leger, and S. Srinivasan, in Modern Aspects of Electrochemistry, J. O'M. Bockris and B. E. Conway, Editors, Plenum Press, New York ,Vol 34, p 53 (2000).
5 D. S. Kim, M. D. Guiver, T. I. Yun, S. Y. Nam, M. Y. Seo, S. J. Kim, H. S. Hwang, and J. W. Rhim, J. Membr. Sci., 281, 156 (2006).   DOI
6 D. S. Kim, H. B. Park, J. W. Rhim, and Y. M. Lee, Solid State Ionics, 176, 117 (2005).   DOI   ScienceOn
7 J. H. Choi, Y. M. Kim, J. S. Lee, K. Y. Cho, H. Y. Jung, J. K. Park, I. S. Park, and Y. E. Sung, Solid State Ionics, 176, 3031 (2005).   DOI   ScienceOn
8 N. W. Deluca and Y. A. Elabd, J. Polym. Sci. Part B: Polym. Phys., 44, 2201 (2006).   DOI   ScienceOn
9 K. Scott, W. M. Taama, and P. Argyropoulos, J. Membr. Sci., 171, 119 (2000).   DOI   ScienceOn
10 H. B. Park, C. H. Lee, J. Y. Sohn, Y. M. Lee, B. D. Freeman, and H. J. Kim, J. Membr. Sci., 285, 432 (2006).   DOI   ScienceOn
11 S. W. Cheon, J. H. Jun, and J. W. Rhim, Membrane Journal, 13, 191 (2003).
12 W. S. Winston Ho and K. K. Sirkar, Membrane Handbook, Van Nostrand Reinhold, New York, p 236 (1992).
13 R. E. Kesting, Synthetic Polymeric Membranes, John Wiley & Sons, New York, p 348 (1985).
14 D. S. Kim, H. B. Park, J. W. Rhim, and Y. M. Lee, J. Membr. Sci,. 240, 37 (2004).   DOI
15 S. Panero, P. Fiorenza, M. A. Navarra, J. R. Owska, and B. Scrosati, J. Electrochem. Soc., 152, 2400 (2005).   DOI   ScienceOn
16 J. Wang, S. Wasmus, and R. F. Savinell, J. Electrochem. Soc., 142, 4218 (1995).   DOI
17 M. P. Hogarth and G. A. Hard, Platinum Met. Rev., 40, 150 (1996).
18 K. Lee and J.-D. Nam, J. Power Sources, 157, 201 (2006).   DOI   ScienceOn