• Title/Summary/Keyword: cell permeability

Search Result 604, Processing Time 0.024 seconds

Skin Permeability of Petroselinum Crispum Extract Using Polymer Micelles and Epidermal Penetration Peptide (고분자 미셀과 경피투과 펩티드를 이용한 파슬리 추출물의 피부흡수 효과)

  • An, Gyu Min;Park, Su In;Kim, Min Gi;Heo, Soo Hyeon;Shin, Moon Sam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.3
    • /
    • pp.265-275
    • /
    • 2019
  • This study was conducted to investigate physiological activity and its skin permeability of Petroselinum crispum extract using polymer micelles and cell penetrating peptide. In the antioxidant test, the total concentrations of polyphenol compounds were determined to be $121.68{\pm}2.49mg/g$ (for ethanol extract and), $72.42{\pm}1.52mg/g$ (for hydrothermal extract.). The DPPH radical scavenging ability was $90.48{\pm}0.46%$ (for ethanol extract) and $83.92{\pm}0.13%$ (for hydrothermal extract) at 2000 mg/L. ABTS radical scavenging ability was $91.08{\pm}0.14%$ for ethanol extract ethanol extract, which is higher than that of hydrothermal extract at 800 mg/L ($69.63{\pm}0.55%$). In the SOD experiments, the P. crispum ethanol extract showed higher SOD activity than that of the P. crispum hydrothermal extract at all concentrations.. At a concentration of 16,000 mg/L, P. crispum ethanol extract showed the highest SOD activity of $128.45{\pm}0.70%$. The elastase inhibitory assay also showed concentration dependence and elastase inhibition of P. crispum ethanol extract was $99.99{\pm}1.54%$, which was the highest at 2,000 mg/L. To solve the problem of insolubility and to improve skin permeability of the extract, PCL-PEG polymer micelle containing P. crispum ethanol extracts and 1% cell permeable peptide, hexa-D-arginine (R6) were successfully prepared with a particle size of 40.10 nm. In the results of 24 hours of skin permeation experiment, total accumulated beta-carotene amounts showed $37.99{\mu}g/cm^2$ in Petroselinum crispum extracts and $68.38{\mu}g/cm^2$ (1.8 times) in P. crispum extract of the particles.

Development of Electrokinetic-Flushing Equipment for a Remediation of Soil Contaminated with Radionuclides (방사성오염토양 제염을 위한 동전기세정장치 개발)

  • Kim, Gye-Nam;Jung, Yun-Ho;Lee, Jung-Joon;Moon, Jei-Kwon;Jung, Chong-Hun;Chung, Un-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • This study examined the effect of an electrokinetic-flushing remediation for a soil of a high permeability. The soil was sampled from the site around a research atomic reactor which had high hydro-conductivities due to a high content of sand in the soil. The flow rate of the washing reagent was fast at the beginning but it was reduced as time lapsed. In the case of using citric acid as a washing reagent, the flow rate was fastest, 78.7 ml/day. The removal efficiencies of $Co^{2+}$ and $Cs^+$ from a soil cell with acetic acid were the highest, which were 95.2% and 84.2% respectively. The soil waste-solution volume generated from the electrokinetic remediation was reduced to about 1/20 of that from the soil washing remediation. Meanwhile, the electrokinetic-flushing method enhanced the removal efficiencies of $Co^{2+}$ and $Cs^+$ from the soil by about 6% and 2% respectively, compared to those by the electrokinetic method. Consequently, it was found that the electrokinetic-flushing method was more effective for the remediation of a soil with a high permeability.

  • PDF

Application of Glucuronic Acid with New Cosmetic Active Ingredient (새로운 노화 방지 성분으로서 글루쿠로닉 애씨드의 기능과 화장품 응용)

  • Lee Geun-Soo;Kim Jin-Wha;Lee Chun-Il;Pyo Hyeong-Bae;Lee Kong-Joo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.4 s.48
    • /
    • pp.471-477
    • /
    • 2004
  • Exposure to elevated temperatures, chemical (active oxigen), or physical stress (UV light) induces immediate physiological response, the expression of heat shock proteins in cells. Thus, cells with elevated Heat Shock Protein levels become more tolerant to stress conditions that are otherwise lethal. First, we studied on the new function of glucuronic acid (GA) as preventive material of skin aging. The application of the GA shows significant induction of Heat Shock Protein 70 kDa (HSP 70 kDa) in contrast to cells without it. GA at the concentration which can induce HSP 70 kDa, protects the cell death induced by second stress (heat shock and hydrogen peroxide) in NIH3T3 cells. Second, we studied on in vitro transdermal permeation characteristic of GA through the excised mouse skin. In this study, we compared the skin permeability of GA in water with O/W emulsion. As a result, skin permeation parameters of GA shows lag time 1.2 h, partition coefficient 0.114, permeation flult rate $0.83114 mg/cm^2/h.$ In case of lag time, O/W emulsion containing GA increase 2.48 h. Also, the total accumulation permeation content decreased in contrast to GA solution after 24 h. But it has long-term permeability of glucuronic acid. These results suggest that glucuronic acid could be a good cosmetic active ingredient.

Effect of ginger and cinnamon extract mixtures on the growth of intestinal bacteria and intestinal inflammation (생강계피 복합물이 장내 유익균 증식 및 염증조절 기능에 미치는 영향)

  • Kim, Min Ju;Kim, Min Seo;Kang, Sung Tae;Kim, Ji Yeon
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.4
    • /
    • pp.321-326
    • /
    • 2017
  • We aimed to assess the potential growth-promoting effects of ginger and cinnamon mixtures (GCM) on intestinal bacteria and their anti-inflammatory effects in a cellular model of intestinal inflammation. Bifidobacterium longum, Lactobacillus sp., and Lactobacillus acidophilus served as intestinal bacteria. Further, in the inflammatory co-culture model, Caco-2 cells co-cultured with RAW264.7 cells were treated with GCM before the addition of lipopolysaccharide (LPS) to induce inflammation in RAW264.7 cells. Addition of GCM to modified Eggerth Gagnon media at a ginger:cinnamon ratio of 1:5 increased the growth of B. longum, Lactobacillus sp., and L. acidophilus compared to that of the control. In a cellular model, compared to LPS-treated groups, GCM-treated groups maintained high transepithelial electrical resistance at ginger:cinnamon ratios of 1:1, 1:3, 1:5, and 1:7 and decreased the tight junction permeability at 3:1, 1:1, 1:3, and 1:5 ratios, similar to that shown by the control groups. In addition, GCM-treated groups showed decreased levels of nitrite at 1:1, 1:5, and 1:7 ginger:cinnamon ratios. Based on these results, it can be concluded that among the various combinations of GCM, the ginger:cinnamon ratio of 1:5 is the optimal composite ratio that shows positive effects on the intestinal beneficial bacteria and in anti-inflammation.

Effects of Ginseng Extract on Excitable Cell Membrane Potential (인삼추출물이 흥분성세포의 막전압에 미치는 영향)

  • Chung, Jin-Mo;Paik, Kwang-Se;Nam, Taick-Sang;Kim, In-Kyo;Kang, Doo-Hee
    • The Korean Journal of Physiology
    • /
    • v.15 no.1
    • /
    • pp.3-8
    • /
    • 1981
  • Studies have been conducted to test the effect of Ginseng alcohol extract on the membrane potentials of frog skeletal muscle. The gastrocnemius muscle was isolated and placed in a chamber containing the Clark-frog Ringer solution. Membrane potentials were recorded using microelectrodes filled with 3 M KCI and muscle was electrically stimulated to obtain action potential. Changes in both the action potential and the resting membrane potential were observed after adding an appropriate amount of Ginseng alcohol extract in the perfusing Ringer solution. The results obtained from 346 muscle cells are summarized as follows : 1) The average resting membrane potential of the normal frog gastrocnemius muscle cell was -92.8 mV and the peak of the action potential reached at 29.8 mV. 2) Both the resting membrane potential and the peak of the action potential decreased by Ginseng alcohol extract, the effect being proportional to the dose of Ginseng alcohol extract. 3) The resting membrane potential and the peak of the action potential continuously decreased until about 40 min after Ginseng addition and leveled off thereafter. The potentials recovered to its original value after Ginseng was washed out. 4) The resting membrane potential was more sensitive to the Ginseng alcohol extract than was the action potential. These results strongly suggest that Ginseng alcohol extract increases both the $Na^+$ and $K^+$ permeability in the skeletal muscle cell membrane.

  • PDF

Resonant Wireless Power Transfer System with High Efficiency using Metamaterial Cover (메타구조 기반의 고효율 공진형 무선전력전송 시스템)

  • Kim, Hyoungjun;Seo, Chulhun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.47-51
    • /
    • 2014
  • In this paper, unit cell and arrayed cover for improving the transfer efficiency of resonant wireless power transfer system is proposed. We used the characteristic of zero refractive index for focusing a magnetic field between the transmitting resonator and receiving resonator. For zero refractive index, we designed the unit cell structure that have a negative value of effective permeability. The size of proposed unit cell based on metamaterial structure is $70mm{\times}70mm{\times}3.2mm$, operating frequency is 13.56 MHz. And, the size of arrayed cover is $400mm{\times}400mm{\times}3.2mm$, is consists of 2-layers. The transfer efficiency of the proposed wireless power transfer system are 94.8 %, 93.2 %, 91.4 %, 90.8 % at 100 mm, 200 mm, 300 mm and 400 mm (distance between transmitting and receiving resonator), respectively. And proposed WPT system has a transfer efficiency high than 90 % over the overall distances.

Clostridium difficile Toxin A Induces Reactive Oxygen Species Production and p38 MAPK Activation to Exert Cellular Toxicity in Neuronal Cells

  • Zhang, Peng;Hong, Ji;Yoon, I Na;Kang, Jin Ku;Hwang, Jae Sam;Kim, Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1163-1170
    • /
    • 2017
  • Clostridium difficile releases two exotoxins, toxin A and toxin B, which disrupt the epithelial cell barrier in the gut to increase mucosal permeability and trigger inflammation with severe diarrhea. Many studies have suggested that enteric nerves are also directly involved in the progression of this toxin-mediated inflammation and diarrhea. C. difficile toxin A is known to enhance neurotransmitter secretion, increase gut motility, and suppress sympathetic neurotransmission in the guinea pig colitis model. Although previous studies have examined the pathophysiological role of enteric nerves in gut inflammation, the direct effect of toxins on neuronal cells and the molecular mechanisms underlying toxin-induced neuronal stress remained to be unveiled. Here, we examined the toxicity of C. difficile toxin A against neuronal cells (SH-SY5Y). We found that toxin A treatment time- and dose-dependently decreased cell viability and triggered apoptosis accompanied by caspase-3 activation in this cell line. These effects were found to depend on the up-regulation of reactive oxygen species (ROS) and the subsequent activation of p38 MAPK and induction of $p21^{Cip1/Waf1}$. Moreover, the N-acetyl-$\text\tiny L$-cysteine (NAC)-induced down-regulation of ROS could recover the viability loss and apoptosis of toxin A-treated neuronal cells. These results collectively suggest that C. difficile toxin A is toxic for neuronal cells, and that this is associated with rapid ROS generation and subsequent p38 MAPK activation and $p21^{Cip1/Waf1}$ up-regulation. Moreover, our data suggest that NAC could inhibit the toxicity of C. difficile toxin A toward enteric neurons.

Study on the PVdF Nanofibers and Graphene Oxide Hybrid Membrane (PVdF 나노섬유와 Graphene Oxide 하이브리드막에 관한 연구)

  • Jung, Hyemin;Chen, Weidong;Yang, Woo Seok;Byun, Hongsik
    • Membrane Journal
    • /
    • v.23 no.3
    • /
    • pp.204-210
    • /
    • 2013
  • Recently, many applications with grapheneoxide (GO) have been reported. But GO membrane for water treatment has not been developed. In this study we prepared polyvinylidene difluoride (PVdF) nanofiber/GO hybrid membrane (FG) for the microfiltration application. The PVdF substrate membrane was prepared by using the electrospinning method with a solution of PVdF in N,N-dimethylacetamide (DMAc) and acetone. GO sheets used in this study were prepared by modified Hummer's method. The PVdF/GO hybrid membrane was finally prepared by spraying the GO solution dispersed in ethanol on the PVdF nanofiber. The successfully prepared FG was thoroughly examined by SEM, Raman, contact angle, porometer and UTM, and water-flux was measured with designed cell (Dead-End Cell). From the contact angle results, it was found that the surface of FG membrane was reformed by hydrophilic property and the water permeability was increased about 2.5 times than that of the nascent PVdF membrane, indicating the possible alternative of the commercial MF membrane.

Diesel Desulfurization Reactor Design for Fuel Cell by Computational Fluid Dynamics (CFD 모델링을 통한 연료전지용 디젤의 흡착탈황 반응기 디자인)

  • Kwon, Sang Gu;Liu, Jay;Im, Do Jin
    • Clean Technology
    • /
    • v.21 no.4
    • /
    • pp.229-234
    • /
    • 2015
  • Recently, there are increasing numbers of study regarding hydrogen fuels but researches on desulfurization of diesel are rare. In this study, we performed diesel desulfurization reactor design by computation fluid dynamics simulation. By analyzing the change in flow and sulfur concentration at the outlet according to the changes in flow rate, reactor length, and reactor diameter, we have found the minimum catalyst performance for the given flow rate condition and the relation between the reactor performance and the reactor size and shape. We also studied the effects of permeability of the packed bed on the flow and sulfur concentration distribution. The present work can be utilized to design a diesel desulfurization reactor for a fuel cell used in ships. Furthermore, the present work also can be used to design low sulfur diesel supply in oil refineries and therefore contribute to the development of clean petrochemical technology.

Tumoral Accumulation of Long-Circulating, Self-Assembled Nanoparticles and Its Visualization by Gamma Scintigraphy

  • Cho, Yong-Woo;Kim, Yoo-Shin;Kim, In-San;Park, Rang-Woon;Oh, Seung-Jun;Moon, Dae-Hyuk;Kim, Sang-Yoon;Kwon, Ick-Chan
    • Macromolecular Research
    • /
    • v.16 no.1
    • /
    • pp.15-20
    • /
    • 2008
  • The enhanced permeability and retention (EPR) effect is used extensively for the passive targeting of many macromolecular drugs for tumors. Indeed, the EPR concept has been a gold standard in polymeric anticancer drug delivery systems. This study investigated the tumoral distribution of self-assembled nanoparticles based on the EPR effect using fluorescein and radio-labeled nanoparticles. Self-assembled nanoparticles were prepared from amphiphilic chitosan derivatives, and their tissue distribution was examined in tumor-bearing mice. The size of the nanoparticles was controlled to be 330 run, which is a size suited for opening between the defective endothelial cells in tumors. The long-circulating polymer nanoparticles were allowed to gradually accumulate in the tumors for 11 days. The amount of nanoparticles accumulated in the tumors was remarkably augmented from 3.4%ID/g tissue at 1 day to 25.9%ID/g tissue at 11 days after i.v. administration. The self-assembled nanoparticles were sustained at a high level throughout the 14 day experimental period, indicating their long systemic retention in the blood circulation. The ${\gamma}$-images provided clear evidence of selective tumor localization of the $^{131}I$-labeled nanoparticles. Confocal microscopy revealed the fluorescein-labeled nanoparticles to be preferentially localized in the perivascular regions, suggesting their extravasation to the tumors through the hyperpermeable angiogenic tumor vasculature. This highly selective tumoral accumulation of nanoparticles was attributed to the leakiness of the blood vessels in the tumors and their long residence time in the blood circulation.