DOI QR코드

DOI QR Code

Skin Permeability of Petroselinum Crispum Extract Using Polymer Micelles and Epidermal Penetration Peptide

고분자 미셀과 경피투과 펩티드를 이용한 파슬리 추출물의 피부흡수 효과

  • An, Gyu Min (Department of Senior Healthcare, majored in Cosmetic Pharmacology, Eulji University) ;
  • Park, Su In (Department of Senior Healthcare, majored in Cosmetic Pharmacology, Eulji University) ;
  • Kim, Min Gi (Department of Senior Healthcare, majored in Cosmetic Pharmacology, Eulji University) ;
  • Heo, Soo Hyeon (Department of Senior Healthcare, majored in Cosmetic Pharmacology, Eulji University) ;
  • Shin, Moon Sam (Department of Senior Healthcare, majored in Cosmetic Pharmacology, Eulji University)
  • 안규민 (을지대학교 대학원 시니어헬스케어학과 화장품약리학 전공) ;
  • 박수인 (을지대학교 대학원 시니어헬스케어학과 화장품약리학 전공) ;
  • 김민기 (을지대학교 대학원 시니어헬스케어학과 화장품약리학 전공) ;
  • 허수현 (을지대학교 대학원 시니어헬스케어학과 화장품약리학 전공) ;
  • 신문삼 (을지대학교 대학원 시니어헬스케어학과 화장품약리학 전공)
  • Received : 2019.07.11
  • Accepted : 2019.09.23
  • Published : 2019.09.30

Abstract

This study was conducted to investigate physiological activity and its skin permeability of Petroselinum crispum extract using polymer micelles and cell penetrating peptide. In the antioxidant test, the total concentrations of polyphenol compounds were determined to be $121.68{\pm}2.49mg/g$ (for ethanol extract and), $72.42{\pm}1.52mg/g$ (for hydrothermal extract.). The DPPH radical scavenging ability was $90.48{\pm}0.46%$ (for ethanol extract) and $83.92{\pm}0.13%$ (for hydrothermal extract) at 2000 mg/L. ABTS radical scavenging ability was $91.08{\pm}0.14%$ for ethanol extract ethanol extract, which is higher than that of hydrothermal extract at 800 mg/L ($69.63{\pm}0.55%$). In the SOD experiments, the P. crispum ethanol extract showed higher SOD activity than that of the P. crispum hydrothermal extract at all concentrations.. At a concentration of 16,000 mg/L, P. crispum ethanol extract showed the highest SOD activity of $128.45{\pm}0.70%$. The elastase inhibitory assay also showed concentration dependence and elastase inhibition of P. crispum ethanol extract was $99.99{\pm}1.54%$, which was the highest at 2,000 mg/L. To solve the problem of insolubility and to improve skin permeability of the extract, PCL-PEG polymer micelle containing P. crispum ethanol extracts and 1% cell permeable peptide, hexa-D-arginine (R6) were successfully prepared with a particle size of 40.10 nm. In the results of 24 hours of skin permeation experiment, total accumulated beta-carotene amounts showed $37.99{\mu}g/cm^2$ in Petroselinum crispum extracts and $68.38{\mu}g/cm^2$ (1.8 times) in P. crispum extract of the particles.

본 연구의 목적은 파슬리의 생리활성을 확인하고 고분자 미셀과 세포투과 펩티드를 이용하여 파슬리 추출물에 대한 피부흡수 효능을 검토하는 것이다. 항산화 측정방법인 총 폴리페놀 함량은 파슬리 에탄올 추출물의 경우에는 $121.68{\pm}2.49mg/g$이며 파슬리 열수 추출물의 경우에는 $72.42{\pm}1.52mg/g$이었다. 농도 2,000 mg/L에서 DPPH radical 소거능은 에탄올 추출물의 경우 $90.48{\pm}0.46%$이고 열수 추출물의 경우 $83.92{\pm}0.13%$로 나타났다. 농도 800 mg/L에서 파슬리 에탄올 추출물의 ABTS radical 소거능은 $91.08{\pm}0.14%$로 열수 추출물의 값($69.63{\pm}0.55%$)보다 더 우수한 결과를 보였다. SOD 실험에서는 농도 의존적인 결과를 보였고, 모든 농도에서 파슬리 에탄올 추출물의 SOD 활성능이 파슬리 열수 추출물의 값보다 높았다. 16,000 mg/L의 농도에서, 파슬리 에탄올 추출물이 $128.45{\pm}0.70%$의 가장 높은 SOD 활성능을 나타내었다. Elastase 저해능 실험 결과에서도 농도 의존적인 결과를 보였으며 파슬리 에탄올 추출물 2,000 mg/L에서 가장 높은 $99.99{\pm}1.54%$의 elastase 저해능이 나타났다. 난용성 문제와 피부 흡수율을 증진시키기 위하여, 파슬리 에탄올 추출물과 1% 세포투과 펩티드(6개 알르기닌, R6)를 함유한 40.01 nm의 입자크기를 갖는 PCL-PEG 고분자 미셀이 성공적으로 제조되었다. 24시간 동안 피부흡수 실험 결과에서, 총 축적된 beta-carotene의 투과량은 파슬리 추출물만 적용한 경우 $37.99{\mu}g/cm^2$을 나타내었지만, 고분자 미셀과 세포투과 펩티드를 함께 적용한 경우의 파슬리 추출물의 투과량은 $68.38{\mu}g/cm^2$으로 1.8배의 경피투과 증가효과를 나타내었다.

Keywords

References

  1. M. H. Oh, H. J. Park, S. H. Lee, and S. Y. Park, The effect of well-being lifestyle on perceived value and purchase intention of naturalistic cosmetics, Kor. J. Aesthet. Cosmetol. 8(3), 175 (2010).
  2. G. G. Duthie, Parsley, polyphenols and nutritional antioxidants, Br. J. Nutr., 81(6), 425 (1999). https://doi.org/10.1017/S0007114599000768
  3. Y. K. Cha, H. D. Cho, W. G. Cho, and S. Y. Byun, Studies on skin whitening efficacy and skin permeation using o/w nanoemulsion system with resorcinol dipentyl ether, J. of Oil & Applied Science, 34(2), 225 (2017). https://doi.org/10.12925/JKOCS.2017.34.2.225
  4. H. G. Yang, H. J. Kim, H. S. Kim, S. N. Park, Ethosome formulation for enhanced transdermal delivery of Artemisia princeps Pampanini extracts, J. Soc. Cosmet. Sci. Korea, 24(2), 190 (2013).
  5. S. J. Park, Y. J. Yang, S. Y. Shim, and D. H. Seo, Preparation and characterization of poly(${\varepsilon}$-caprolactone)/poly(ethylene glycol) microcapsules containing fragrant oil, Appl. Chem. Eng., 13(7), 697 (2002).
  6. K. Sepideh, and K. Maryam, Preparation of PCL/PEG superporous hydrogel containing drug-loaded nanoparticles: The effect of hydrophobic-hydrophilic interface on the physical properties, Eur. Polym. J, 58, 180 (2014). https://doi.org/10.1016/j.eurpolymj.2014.06.024
  7. R. K. Jain, Delivery of molecular medicine to solid tumors: lessons from in vivo imaging of gene expression and function, J Control Release, 74(1-3), 7 (2001). https://doi.org/10.1016/S0168-3659(01)00306-6
  8. P. Lundberg, and U. Langel, A brief introduction to cell-penetrating peptides. J. Mol. Recognit., 16(5), 227 (2003). https://doi.org/10.1002/jmr.630
  9. P. A. Wender, D. J. Mitchell, K. Pattabiraman, E. T. Pelkey, L. Steinman, and J. B. Rothbard, The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc. Nati. Acad. Sci. U. S. A., 97(24), 13003 (2000). https://doi.org/10.1073/pnas.97.24.13003
  10. O. Folin, and W. Denis, On phosphotungstic-phosphomolybdic compounds as color reagents, J. Biol. Chem., 12(2), 239 (1912). https://doi.org/10.1016/S0021-9258(18)88697-5
  11. M. S. Blois, Antioxidant determinations by the use of a stable free radical, Nature, 181, 1199 (1958). https://doi.org/10.1038/1811199a0
  12. G. M. An, S. I. Park, M. G. Kim, and M. S. Shin, Antioxidant, antimicrobial and anti-inflammatory effects of Anemarrhena asphodeloides extracts using supercritical extraction, J. Invest. Cosmetol., 14(4), 455 (2018).
  13. S. Marklund, and G. Marklund, Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase, Eur. J. Biochem., 47(3), 469 (1974). https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  14. R. J. Cannell, S. J. Kellam, A. M. Owsianka, and J. M. Walker, Results of a large scale screen of microalgae for the production of protease inhibitors, Planata Med., 54(1), 10, (1988). https://doi.org/10.1055/s-2006-962319
  15. A. Plazonic, F. Bucar, Z. Males, A. Mornar, B. Nigovic, and N. Kujundzic, Identification and quantification of flavonoids and phenolic acids in burr parsley (Caucalis platycarpos L.), using highperformance liquid chromatography with diode array detection and electrospray ionization mass spectrometry. Molecules, 14(7), 2466 (2009). https://doi.org/10.3390/molecules14072466
  16. T. Daly, M. A Jiwan, N. M O''Brien, and S. A. Aherne, Carotenoid content of commonly consumed herbs and assessment of their bioaccessibility using an in vitro digestion model, Plant Foods Hum Nutr, 65(2), 164 (2010) https://doi.org/10.1007/s11130-010-0167-3
  17. K. S. Cho, Inhibitory effect of DPPH radical scavenging activity and hydroxyl radicals (OH) activity of hydrocotyle sibthorpioides lamarck, J. Life Sci., 26(9), 1022 (2016). https://doi.org/10.5352/JLS.2016.26.9.1022
  18. F. Natella, M. Maldini, G. Leoni, and C. Scaccini, Glucosinolates redox activities : can they act as antioxidants?, Food Chem, 149, 226 (2014). https://doi.org/10.1016/j.foodchem.2013.10.134
  19. D. Kligman, Cosmeceuticals, Dermatol Clin, 18(4), 609 (2000). https://doi.org/10.1016/S0733-8635(05)70211-4