• Title/Summary/Keyword: cell permeability

Search Result 604, Processing Time 0.03 seconds

Transport Properties of Polymer Blend Membranes of Sulfonated and Nonsulfonated Polysulfones for Direct Methanol Fuel Cell Application

  • Kim, Dong-Hwee;Kim, Sung-Chul
    • Macromolecular Research
    • /
    • v.16 no.5
    • /
    • pp.457-466
    • /
    • 2008
  • The relation between the phase separated morphologies and their transport properties in the polymer blend membrane for direct methanol fuel cell application was studied. In order to enhance the proton conductivity and reduce the methanol crossover, sulfonated poly(arylene ether sulfone) copolymer, with a sulfonation of 60 mol% (sPAES-60), was blended with nonsulfonated poly(ether sulfone) copolymer (RH-2000, Solvay). Various morphologies were obtained by varying the drying condition and the concentration of the casting solution (10, 15, 20 wt%). The transport properties of proton and methanol molecule through the polymer blend membranes were studied according to the absorbed water. AC impedance spectroscopy was used to measure the proton conductivity and a liquid permeability measuring instrument was designed to measure the methanol permeability. The state of water in the blend membranes was confirmed by differential scanning calorimetry and was used to correlate the morphology of the membrane with the membrane transport properties.

Preparation and Their Characterization of Blended Polymer Electrolyte Membranes of Polysulfone and Sulfonated Poly(ether ether ketone) (Polysulfone/SPEEK 블랜드 고분자 전해질 막 제조 및 특성 연구)

  • Cheon, Hun-Sang;Oh, Min;Hong, Seong-Uk
    • Membrane Journal
    • /
    • v.13 no.1
    • /
    • pp.47-53
    • /
    • 2003
  • Poly(ether ether ketone)(PEEK) was sulfonated using sulfuric acid and blended with polysulfone with various ratios. The blended polymer electrolyte membranes were characterized in terms of methanol permeability, proton conductivity and ion exchange capacity. As the amount of sulfonated PEEK increased, both methanol permeability and proton conductivity increased. This was due to the increase of ion exchange capacity. The experimental results indicated that the blend membrane with 20% polysulfone was the best choice In terms of the ratio of proton conductivity to methanol permeability.

Synthesis and Characterization of Sulfonated Poly(phthalazinone ether sulfone)(sPPES)/Silica Membrane for Proton Exchange Membrane Materials

  • Kim, Dae Sik;Park, Ho Bum;Nam, Sang Young;Rhim, Ji Won;Lee, Young Moo
    • Korean Membrane Journal
    • /
    • v.6 no.1
    • /
    • pp.44-54
    • /
    • 2004
  • Organic-inorganic composite membranes based on sulfonated poly(phthalazinone ether sulfone) (sPPES)/silica hybrid were prepared using the sol-gel process under acidic conditions. The sulfonation of PPES with concentrated sulfuric acid as sulfonation agent was carried out to prepare proton exchange membrane material. The behaviors of the proton conductivity and methanol permeability are depended on the sulfonation time (5-100 hr). The hybrid membranes composed of highly sulfonated PPES (IEC value: 1.42 meq./g) and silica were fabricated from different silica content (5-20 wt%) in order to achieve desirable proton conductivity and methanol permeability demanded for fuel cell applications. The silica particles within membranes were used for the purpose of blocking excessive methanol cross-over and for forming the path way to transport of the proton due to absorbing water molecules with ≡SiOH on silica. The presence of silica particles in the organic polymer matrix results in hybrid membranes with reduced methanol permeability and improved proton conductivity.

Antifungal Activity of Rheum undulatum on Candida albicans by the Changes in Membrane Permeability (막투과성 변화로 인한 대황의 Candida albicans에 대한 항진균 활성)

  • Lee, Heung-Shick;Kim, Younhee
    • Korean Journal of Microbiology
    • /
    • v.50 no.4
    • /
    • pp.360-367
    • /
    • 2014
  • Candida albicans is an opportunistic and the most prevalent fungal pathogen that can cause superficial and systemic infections in immunocompromised patients. C. albicans can promote the transition from budding yeast to filamentous form, generating biofilms. Infections associated with C. albicans biofilms are frequently resistant to conventional antifungal therapy. Therefore, the development of more effective antifungal drugs related with biofilm formation is required urgently. The roots of Rheum undulatum have been used for medicinal purposes in Korea and China traditionally. The aim of present study was to evaluate the effect of R. undulatum extract upon preformed biofilms of 12 clinical C. albicans isolates and the antifungal activities. Its effect on preformed biofilms was evaluated using XTT reduction assay, and metabolic activity of all tested strains was reduced significantly ($49.4{\pm}6.0%$) at 0.098 mg/ml R. undulatum. The R. undulatum extract blocked the adhesion of C. albicans biofilms to polystyrene surfaces, and damaged the cell membrane integrity of C. albicans which was analyzed by CFDA, AM, and propidium iodide double staining. It caused cell lysis which was observed by Confocal laser scanning and phase contrast microscope after propidium iodide and neutral red staining, respectively. Membrane permeability was changed as evidenced by crystal violet uptake. The data suggest that R. undulatum inhibits biofilm formation by C. albicans, which can be associated with the damage of the cell membrane integrity, the changes in the membrane permeability and the cell lysis of C. albicans.

Studies on the Preparation of the Poly(vinyl alcohol) ion Exchange Membranes for Direct Methanol Fuel cell (폴리비닐알콜을 이용한 직접메탄을 연료전지용 이온교환막 제조에 관한 연구)

  • 임지원;천세원;전지현;남상용
    • Membrane Journal
    • /
    • v.13 no.3
    • /
    • pp.191-199
    • /
    • 2003
  • Cation exchange polymer electrolyte membrane for the application of direct methanol fuel cell (DMFC) was studied. Poly(vinyl alcohol)(PVA) well known as a methanol barrier in pervaporation separation was used fur the base materials and poly(acrylic acid)(PAA) was used for the crosslinking agent with various concentration. Methanol permeability, ion conductivity, ion exchange capacity, water contents and fixed ion concentration of the membranes were investigated to evaluate the performance of the fuel cell electrolyte membrane. Methanol permeability and ion conductivity of the membranes were decreased with increasing PAA content and were increased over 15% of PAA content. These phenomena would be explained with the introduction of hydrophilic crosslinking agent. The membranes with 15% content of PAA showed methanol permeability of $6.49{\times}10^{-8}/cm^2/s,\; 2.85{\times}10^{-7}CM^2/s$ at $25^{\circ}C,\; 50^{\circ}C$ of operating temperatures, respectively. ion conductivities of the membrane were $2.66{\times}10^{-3}\;S/cm,$ $9.16{\times}10^{-3}\;S/cm$ at $25^{\circ}C,\; 50^{\circ}C$ of operating temperatures, respectively. ion exchange capacity, water content and fixed ion concentration of the membrane were revealed 1.32 meq/g membrane,0.25 g $H_2$O/g membrane and 5.25 meq/g $H_2O$, respectively.

Variation of Porosity and Gas Permeability of Gas Diffusion Layers Under Compression (가스확산층의 압축에 따른 공극률 및 기체투과율의 변화)

  • Lee, Yongtaek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.8
    • /
    • pp.767-773
    • /
    • 2013
  • This study suggested the variations of porosity and gas permeability of gas diffusion layers (GDLs), which are easily deformed among the components of a highly compressed PEMFC stack. The volume change owing to compression was measured experimentally, and the variations in the porosity and gas permeability were estimated using correlations published in previous literature. The effect of polytetrafluoroethylene (PTFE) which is added to the GDLs to enhance water discharge was investigated on the variations of porosity and gas permeability. The gas permeability which strongly affects the mass transport through GDL, decreases sharply with increasing compression when the GDL has high PTFE loading. As a result, the mass transport through the pore network of GDL can be changed considerably according to the PTFE loading even with the same clamping force. The accuracy of modeling of transport phenomena through GDL can be improved due to the enhanced correlations developed based on the results of this study.

Comparison of Measurement Method of Hydrogen Permeability in Proton Exchange Membrane Fuel Cell (고분자전해질연료전지에서 수소투과도 측정법의 비교)

  • Oh, So-Hydong;Yun, Jeawon;Lee, Daewoong;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.507-511
    • /
    • 2019
  • Hydrogen permeability is widely used to evaluate the polymer membrane durability of polymer electrolyte fuel cells (PEMFC). Linear sweep voltammetry (LSV) is mainly used to measure hydrogen permeability easily. There are many differences in LSV measurement method among researchers, and it is often difficult to compare the results. Therefore, in this study, we tried to confirm the accuracy by comparing the hydrogen permeability of LSV method and gas chromatograph which is difficult to measure but accurate value. The LSV method used the DOE and NEDO methods. When the hydrogen permeability was measured by varying the temperature and the relative humidity, the DOE LSV method showed an accuracy of less than 5% in the error range compared with the GC method. In the NEDO LSV method, the error was reduced when the hydrogen permeation current density was determined at the current value of 0.3 V as the DOE method.

Evaluation and Fabrication of Composite Bipolar Plate to Develop a Light Weight Direct Methanol Fuel Cell Stack for Small-scale UAV Application (I) (무인항공기용 경량화 직접메탄올연료전지 스택 개발을 위한 복합소재 분리판 제작 및 성능 평가 (I))

  • Kang, Kyung-Mun;Park, Sung-Hyun;Kim, Jin-Soo;Ji, Hyun-Jin;Ju, Hyun-Chul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.2
    • /
    • pp.134-142
    • /
    • 2012
  • A bipolar plate is a major component of a fuel cell stack, which occupies 50~60% of the total weight and over 50% of the total cost of a typical fuel cell stack. In this study, a composite bipolar plate is designed and fabricated to develop a compact and light-weight direct methanol fuel cell (DMFC) stack for a small-scale Unmanned Aerial Vehicle (UAV) application. The composite bipolar plates for DMFCs are prepared by a compression molding method using resole type phenol resin as a binder and natural graphite and carbon black as a conductor filler and tested in terms of electrical conductivity, mechanical strength and hydrogen permeability. The flexural strength of 63 MPa and the in-plane electrical conductivities of 191 S $cm^{-1}$ are achieved under the optimum bipolar plate composition of phenol : 18%; natural graphite : 82%; carbon black : 3%, indicating that the composite bipolar plates exhibit sufficient mechanical strength, electrical conductivity and hydrogen permeability to be applied in a DMFC stack. A DMFC with the composite bipolar plate is tested and shows a similar cell performance with a conventional DMFC with graphite-based bipolar plate.

Cytocidal Effect of TALP-32 on Human Cervical Cancer Cell HeLa (TALP-32의 인체자궁암 세포주 HeLa에 대한 세포독성)

  • Park, Ji-Hoon;Kim, Jong-Seok;Yun, Eun-Jin;Song, Kyoung-Sub;Seo, Kang-Sik;Kim, Hoon;Jung, Yeon-Joo;Yun, Wan-Hee;Lim, Kyu;Hwang, Byoung-Doo;Park, Jong-Il
    • Toxicological Research
    • /
    • v.22 no.4
    • /
    • pp.315-322
    • /
    • 2006
  • TALP-32 is highly basic protein with a molecular weight of 32 kDa purified from human term placenta. Some basic proteins such as defensins and cecropins are known to induce cell death by increasing membrane permeability and some of them are under development as an anticancer drug especially targeting multi-drug resistant cancers. Therefore, we investigated cytotoxic effect and mechanism of TALP-32 When HeLa cell was incubated with TALP-32, cytotoxicity was increased in time and dose dependent manner. As time goes by, HeLa cells became round and plasma membrane was ruptured. Increase of plasma membrane permeability was determined with LDH release assay. Also in transmission electron microscopy, typical morphology of necrotic cell death, such as cell swelling and intracellular organelle disruption was observed, but DNA fragmentation and caspase activation was not. And necrotic cell death was determined with Annexin V/Pl staining. The cytotoxicity of TALP-32 was minimal and decreased or RBC and Hep3B respectively. These data suggests that TALP-32 induces necrosis on rapidly growing cells but not on slowly growing cells implicating the possibility of its development of anticancer peptide drug.

Characteristics of Material Function Related to Permeability and Compressibility for Soft Clay Ground (투수 및 압축에 대한 연약 점토지반의 물질함수 특성)

  • Lee, Song;Jeon, Je-Sung;Yi, Chang-Tok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.183-194
    • /
    • 2004
  • It's essential process to study non-linear material function related to characteristics of compressibility and permeability when we predict the consolidation behavior of soft clay ground. In this study, laboratory tests were conducted to find out the material function using marine clay. Standard oedometer test and Rowe cell test were performed with conditions, which were classified into vertical drainage only, radial drainage only and vertical-radial drainage case. Modified oedometer test equipment was developed to find out the material function and special extrusion device was originated to minimize the sample disturbance effect. Reliability of the results in modified oedometer test could be confirmed by comparing with the Rowe cell's one. Effective stress - void ratio - permeability relations were analyzed using all testing results. As a result, void ratio with effective stress level could be expressed by the power function and permeability with void ratio could be expressed by exponential function. In soft clay with high initial water content and low shear strength, non-linear characteristics related to compressibility and permeability varied with wide range by the effective stress levels. It's important to note that non-linearity of the material function should be considered at prediction of the consolidation behavior.