• Title/Summary/Keyword: cell metabolism

Search Result 1,241, Processing Time 0.026 seconds

Cellular and Molecular Links between Autoimmunity and Lipid Metabolism

  • Ryu, Heeju;Kim, Jiyeon;Kim, Daehong;Lee, Jeong-Eun;Chung, Yeonseok
    • Molecules and Cells
    • /
    • v.42 no.11
    • /
    • pp.747-754
    • /
    • 2019
  • The incidence of atherosclerosis is higher among patients with several autoimmune diseases such as psoriasis, rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). It is well documented that innate immune cells including macrophages and dendritic cells sense lipid species such as saturated fatty acids and oxidized low-density lipoprotein and produce pro-inflammatory cytokines and chemokines. However, whether a hyperlipidemic environment also impacts autoimmune T cell responses has been unclear. Among $CD4^+$ T cells, Th17 and follicular helper T (Tfh) cells are known to play pathogenic roles in the development of hyperlipidemia-associated autoimmune diseases. This review gives an overview of the cellular and molecular mechanisms by which dysregulated lipid metabolism impacts the pathogenesis of autoimmune diseases, with specific emphasis on Th17 and Tfh cells.

Ginsenoside compound-Mc1 attenuates oxidative stress and apoptosis in cardiomyocytes through an AMP-activated protein kinase-dependent mechanism

  • Hong, So-hyeon;Hwang, Hwan-Jin;Kim, Joo Won;Kim, Jung A.;Lee, You Bin;Roh, Eun;Choi, Kyung Mook;Baik, Sei Hyun;Yoo, Hye Jin
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.664-671
    • /
    • 2020
  • Background: Ginsenoside compound-Mc1 (Mc1) is a member of the deglycosylated ginsenosides obtained from ginseng extract. Although several ginsenosides have a cardioprotective effect, this has not been demonstrated in ginsenoside Mc1. Methods: We treated H9c2 cells with hydrogen peroxide (H2O2) and ginsenoside Mc1 to evaluate the antioxidant effects of Mc1. The levels of antioxidant molecules, catalase, and superoxide dismutase 2 (SOD2) were measured, and cell viability was determined using the Bcl2-associated X protein (Bax):B-cell lymphoma-extra large ratio, a cytotoxicity assay, and flow cytometry. We generated mice with high-fat diet (HFD)-induced obesity using ginsenoside Mc1 and assessed their heart tissues to evaluate the antioxidant effect and the fibrosis-reducing capability of ginsenoside Mc1. Results: Ginsenoside Mc1 significantly increased the level of phosphorylated AMP-activated protein kinase (AMPK) in the H9c2 cells. The expression levels of catalase and SOD2 increased significantly after treatment with ginsenoside Mc1, resulting in a decrease in the production of H2O2-mediated reactive oxygen species. Treatment with ginsenoside Mc1 also significantly reduced the H2O2-mediated elevation of the Bax:Bcl2 ratio and the number of DNA-damaged cells, which was significantly attenuated by treatment with an AMPK inhibitor. Consistent with the in vitro data, ginsenoside Mc1 upregulated the levels of catalase and SOD2 and decreased the Bax:B-cell lymphoma-extra large ratio and caspase-3 activity in the heart tissues of HFD-induced obese mice, resulting in reduced collagen deposition. Conclusion: Ginsenoside Mc1 decreases oxidative stress and increases cell viability in H9c2 cells and the heart tissue isolated from HFD-fed mice via an AMPK-dependent mechanism, suggesting its potential as a novel therapeutic agent for oxidative stress-related cardiac diseases.

1, 25(OH)$_2$-23ene-$D_3$ : Effects on Proliferation and Differentiation of U937 Cells in vitro and on Clcium Metabolism of Rat in vivo (1, 25(OH)$_2$-23ene-$D_3$ : in vitro에서 U937 세포의 증식과 분화 및 in vivo에서 쥐의 칼슘대사에 미치는 영향)

  • 정수자;서명자
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 1995
  • 1, 25(OH)2-23ene-D3 is a novel vitamine D3 analog which has a double bond between C-23 and C-24. We describe the effects of this analog on cell differentiation and cell proliferation in vitro using the human histiocytic lymphoma cell line U937, and on calcium metabolism in rats in vivo. In the present investigation 1, 25(OH)2-23ene-D3 was compared to the natural metabolite of vitamin D3, 1$\alpha$, 25-dihydroxycholecalciferol[1, 25(OH)2-23ene-D3 was more potent than 1, 25(OH)2-23ene-D3 for inhibition of proliferation and induction of differentiation of U937 cells. Especially, its effect on induction of differentiation, as measured by superoxide production and nonspecific esterase(NSE) activity, was about 20-fold more potent that 1, 25(OH)2-23ene-D3. This analog morphologically and functionally differentiated U937 cells to monocyte-macrophage phenotype showing a decrease of N/C ratio in Giemsa staining and the increase of adherence ability to surface. Intraperitoneal administration of 1, 25(OH)2-23ene-D3 to rats showed that the compound had at least 50 times less activity than 1, 25(OH)2-23ene-D3 in causing hypercalcemia and hypercalciuria. The strong direct effects of 1, 25(OH)2-23ene-D3 on cell proliferation and cell differentiation, coupled with its decreased activity of calcium metabolism make this compound an interesting candidate for clinical studies including patients with leukemia, as well as several skin disorders, such as psoriasis.

  • PDF

Identification of Lactic Acid Bacteria in Kimchi Using SDS-PAGE Profiles of Whole Cell Proteins

  • Kim, Tae-Woon;Jung, Sang-Hoon;Lee, Ji-Yeon;Choi, Sun-Kyu;SUN-HEE-PARK;JAE-SUN-JO
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.119-124
    • /
    • 2003
  • This study was conducted to evaluate the practical usefulness of the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PACE) fingerprinting of whole cell proteins far the identification of lactic acid bacteria in Kimchi. SDS- PACE of whole cell proteins of the reference strains and lactic acid bacteria isolated from Kimchi yielded differential banding patterns that were highly specific fingerprints, thus making it possible to identify. Identification of the isolates from Kimchi was achieved by comparing the SDS-PAGE fingerprints of isolates to those of reference strains. In addition, the reliability of SDS-PAGE was examined by comparing the results with those of the APL 50 CHL system assay and 16S rRNA gene sequence. SDS-PACE assay showed a different identity to reference strains, while the APL 50 CHL system and 16S rRNA gene sequence could not distinguish a few strains. Therefore, SDS-PAGE of the whole cell proteins is a specific and a reliable method that will be useful for the identification of lactic acid bacteria in Kimchi to the species level, and can be used as an alternative or complementary identification method.

Manassantin A and B Isolated from Saururus chinensis Inhibit $TNF-{\alpha}-Induced$ Cell Adhesion Molecule Expression of Human Umbilical Vein Endothelial Cells

  • Kwon Oh Eok;Lee Hyun Sun;Lee Seung Woong;Chung Mi Yeon;Bae Ki Hwan;Rho Mun-Chual;Kim Young-kook
    • Archives of Pharmacal Research
    • /
    • v.28 no.1
    • /
    • pp.55-60
    • /
    • 2005
  • Leukocyte adhesion to the vascular endothelium is a critical initiating step in inflammation and atherosclerosis. We have herein studied the effect of manassantin A (1) and S (2), dineolignans, on interaction of THP-1 monocytic cells and human umbilical vein endothelial cells (HUVEC) and expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin in HUVEC. When HUVEC were pretreated with 1 and 2 followed by stimulation with $TNF-{\alpha}$, adhesion of THP-1 cells to HUVEC decreased in dose-dependent manner with $IC_{50}$ values of 5 ng/mL and 7 ng/mL, respectively, without cytotoxicity. Also, 1 and 2 inhibited $TNF-{\alpha}-induceda$ up-regulation of ICAM-1, VCAM-1 and E-selectin. The present findings suggest that 1 and 2 prevent monocyte adhesion to HUVEC through the inhibition of ICAM-1, VCAM-1 and E-selectin expression stimulated by $TNF-\alpha$, and may imply their usefulness for the prevention of atherosclerosis relevant to endothelial activation.

Inhibitory Effects of Natural Plant Extracts on ICAM-1/LFA-1 Mediated Adhesion of HL-60 Cells (자생식물 추출물의 세포접착인자 저해활성 검색)

  • Kwon, Oh-Eok;Lee, Seung-Woong;Chung, Mi-Yeon;Kim, Young-Ho;Lee, Hyun-Sun;Kim, Young-Kook;Rho, Mun-Chual
    • Korean Journal of Pharmacognosy
    • /
    • v.33 no.4 s.131
    • /
    • pp.343-351
    • /
    • 2002
  • Atherosclerosis is a progressive disease characterized by the accumulation of lipids and fibrous elements in the arteries. Monocyter/macrophages are involved in many aspects of the development of atherosclerotic plaques. It is known that the intercellular adhesion molecule-1(ICAM-1) expressed preferentially on endothelial cells of atherosclerotic plaque, promotes local adhesion and transendothelial migration of monocytes, neutrophils, and lymphocytes. Using the human promyelocytic leukemia HL-60 cell line, we investigated the inhibitory effects of methanol extracts of 175 natural plants on ICAM-1/LFA-1 mediated cell adhesion. Eight kinds of methanol extracts of tested plants inhibited PMA-induces homotypic aggregationof HL-60 cells without cytotoxicity at the concentration of $6.25\;{\mu}g/ml$. They were divided two fractions of $CHCI_3$ and $H_2O$ to use solvent partition. Among them, $CHCI_3$ extract $(1.0\;{\mu}g/ml)$ of Saururus chinensis and Chloranthus japonicus singificantly inhibited aggregation of HL-60 cells without cytotoxicity, respectively.

A Study on Phosphate Metabolism of Chloroplast Isolated from Spinach (시금치에서 분이한 엽록체의 인산대사에 관한 연구)

  • 이종삼
    • Journal of Plant Biology
    • /
    • v.19 no.3
    • /
    • pp.71-84
    • /
    • 1976
  • In order to observe the phosphate metabolism in chloroplast, the contents of inorganic phosphate and various compounds in chloroplast from spinach leaf tissues were investigated during the reaction in the light and dark in the reaction mixture and the turnover of phosphate in chloroplast was compared with that of whole cell system: 1. The phosphorus of DNA in chloroplast appears to be transferred from inorganic phosphate, while in whole cell system from phosphate pool. 2. $^{32}P-phosphate$ content of acid soluble fraction in chloroplast as well as in whole cell system was more increased in the light than dark during the reaction. It was noted to be caused by the stimulation of sugar phosphate synthesis in the light. 3. It was confirmed that polyphosphate exists in chloroplast as well as whole cell. Acid insoluble polyphosphate content in whole cell system was significantly decreased during the reaction and the similar tendency was also observed in chloroplst. It is, therefore, considered that acid insoluble polyphosphate also play an most important role as a phosphate pool respectively in chloroplast and in cytoplasm. 4. Protein and lipid phosphorus in chloroplast as well as whole cell system were transferred from acid insoluble polyphosphate.

  • PDF

CRISPR/Cas9-mediated knockout of the Vanin-1 gene in the Leghorn Male Hepatoma cell line and its effects on lipid metabolism

  • Lu Xu;Zhongliang Wang;Shihao Liu;Zhiheng Wei;Jianfeng Yu;Jun Li;Jie Li;Wen Yao;Zhiliang Gu
    • Animal Bioscience
    • /
    • v.37 no.3
    • /
    • pp.437-450
    • /
    • 2024
  • Objective: Vanin-1 (VNN1) is a pantetheinase that catalyses the hydrolysis of pantetheine to produce pantothenic acid and cysteamine. Our previous studies have shown that the VNN1 is specifically expressed in chicken liver which negatively regulated by microRNA-122. However, the functions of the VNN1 in lipid metabolism in chicken liver haven't been elucidated. Methods: First, we detected the VNN1 mRNA expression in 4-week chickens which were fasted 24 hours. Next, knocked out VNN1 via CRISPR/Cas9 system in the chicken Leghorn Male Hepatoma cell line. Detected the lipid deposition via oil red staining and analysis the content of triglycerides (TG), low-density lipoprotein-C (LDL-C), and high-density lipoprotein-C (HDL-C) after VNN1 knockout in Leghorn Male Hepatoma cell line. Then we captured various differentially expressed genes (DEGs) between VNN1-modified LMH cells and original LMH cells by RNA-seq. Results: Firstly, fasting-induced expression of VNN1. Meanwhile, we successfully used the CRISPR/Cas9 system to achieve targeted mutations of the VNN1 in the chicken LMH cell line. Moreover, the expression level of VNN1 mRNA in LMH-KO-VNN1 cells decreased compared with that in the wild-type LMH cells (p<0.0001). Compared with control, lipid deposition was decreased after knockout VNN1 via oil red staining, meanwhile, the contents of TG and LDL-C were significantly reduced, and the content of HDL-C was increased in LMH-KO-VNN1 cells. Transcriptome sequencing showed that there were 1,335 DEGs between LMH-KO-VNN1 cells and original LMH cells. Of these DEGs, 431 were upregulated, and 904 were downregulated. Gene ontology analyses of all DEGs showed that the lipid metabolism-related pathways, such as fatty acid biosynthesis and long-chain fatty acid biosynthesis, were enriched. KEGG pathway analyses showed that "lipid metabolism pathway", "energy metabolism", and "carbohydrate metabolism" were enriched. A total of 76 DEGs were involved in these pathways, of which 29 genes were upregulated (such as cytochrome P450 family 7 subfamily A member 1, ELOVL fatty acid elongase 2, and apolipoprotein A4) and 47 genes were downregulated (such as phosphoenolpyruvate carboxykinase 1) by VNN1 knockout in the LMH cells. Conclusion: These results suggest that VNN1 plays an important role in coordinating lipid metabolism in the chicken liver.

Silencing YY1 Alleviates Ox-LDL-Induced Inflammation and Lipid Accumulation in Macrophages through Regulation of PCSK9/ LDLR Signaling

  • Zhengyao Qian;Jianping Zhao
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.11
    • /
    • pp.1406-1415
    • /
    • 2022
  • The formation of macrophage foam cells stimulated by oxidized low-density lipoprotein (ox-LDL) is deemed an important cause of atherosclerosis. Transcription factor Yin Yang 1 (YY1), which is a universally expressed multifunctional protein, is closely related to cell metabolism disorders such as lipid metabolism, sugar metabolism, and bile acid metabolism. However, whether YY1 is involved in macrophage inflammation and lipid accumulation still remains unknown. After mouse macrophage cell line RAW264.7 cells were induced by ox-LDL, YY1 and proprotein convertase subtilisin/kexin type 9 (PCSK9) expressions were found to be increased while low-density lipoprotein receptor (LDLR) expression was lowly expressed. Subsequently, through reverse transcription-quantitative polymerase chain reaction (RT-qPCR), Western blot analysis, Oil Red O staining and cholesterol quantification, it turned out that silencing of YY1 attenuated the inflammatory response and lipid accumulation in RAW264.7 cells caused by ox-LDL. Moreover, results from the JASPAR database, chromatin immunoprecipitation (ChIP) assay, luciferase reporter assay and Western blot analysis suggested that YY1 activated PCSK9 by binding to PCSK9 promoter and modulated the expression of LDLR in the downstream of PCSK9. In addition, the results of functional experiments demonstrated that the inhibitory effects of YY1 interference on ox-LDL-mediated macrophage inflammation and lipid accumulation were reversed by PCSK9 overexpression. To sum up, YY1 depletion inhibited its activation of PCSK9, thereby reducing cellular inflammatory response, cholesterol homeostasis imbalance, and lipid accumulation caused by ox-LDL.