DOI QR코드

DOI QR Code

Silencing YY1 Alleviates Ox-LDL-Induced Inflammation and Lipid Accumulation in Macrophages through Regulation of PCSK9/ LDLR Signaling

  • Zhengyao Qian (The Second Department of Cardiology, Tianjin Hospital) ;
  • Jianping Zhao (The Second Department of Cardiology, Tianjin Hospital)
  • Received : 2022.07.06
  • Accepted : 2022.09.19
  • Published : 2022.11.28

Abstract

The formation of macrophage foam cells stimulated by oxidized low-density lipoprotein (ox-LDL) is deemed an important cause of atherosclerosis. Transcription factor Yin Yang 1 (YY1), which is a universally expressed multifunctional protein, is closely related to cell metabolism disorders such as lipid metabolism, sugar metabolism, and bile acid metabolism. However, whether YY1 is involved in macrophage inflammation and lipid accumulation still remains unknown. After mouse macrophage cell line RAW264.7 cells were induced by ox-LDL, YY1 and proprotein convertase subtilisin/kexin type 9 (PCSK9) expressions were found to be increased while low-density lipoprotein receptor (LDLR) expression was lowly expressed. Subsequently, through reverse transcription-quantitative polymerase chain reaction (RT-qPCR), Western blot analysis, Oil Red O staining and cholesterol quantification, it turned out that silencing of YY1 attenuated the inflammatory response and lipid accumulation in RAW264.7 cells caused by ox-LDL. Moreover, results from the JASPAR database, chromatin immunoprecipitation (ChIP) assay, luciferase reporter assay and Western blot analysis suggested that YY1 activated PCSK9 by binding to PCSK9 promoter and modulated the expression of LDLR in the downstream of PCSK9. In addition, the results of functional experiments demonstrated that the inhibitory effects of YY1 interference on ox-LDL-mediated macrophage inflammation and lipid accumulation were reversed by PCSK9 overexpression. To sum up, YY1 depletion inhibited its activation of PCSK9, thereby reducing cellular inflammatory response, cholesterol homeostasis imbalance, and lipid accumulation caused by ox-LDL.

Keywords

References

  1. Khatana C, Saini NK, Chakrabarti S, Saini V, Sharma A, Saini RV, et al. 2020. Mechanistic insights into the oxidized low-density lipoprotein-induced atherosclerosis. Oxid. Med. Cell. Longev. 2020: 5245308.
  2. Chistiakov DA, Melnichenko AA, Myasoedova VA, Grechko AV, Orekhov AN. 2017. Mechanisms of foam cell formation in atherosclerosis. J. Mol. Med. 95: 1153-1165. https://doi.org/10.1007/s00109-017-1575-8
  3. Kattoor AJ, Kanuri SH, Mehta JL. 2019. Role of Ox-LDL and LOX-1 in Atherogenesis. Curr. Med. Chem. 26: 1693-1700. https://doi.org/10.2174/0929867325666180508100950
  4. Pirillo A, Norata GD, Catapano AL. 2013. LOX-1, OxLDL, and atherosclerosis. Mediators Inflamm. 2013: 152786.
  5. Ericsson J, Usheva A and Edwards PA. 1999. YY1 is a negative regulator of transcription of three sterol regulatory element-binding protein-responsive genes. J. Biol. Chem. 274: 14508-14513. https://doi.org/10.1074/jbc.274.20.14508
  6. Zhang M, Zhang Y, Yang S, Zhou J, Gao W, Yang X, et al. 2017. Multifunctional YY1 in liver diseases. Semin. Liver Dis. 37: 363-376. https://doi.org/10.1055/s-0037-1607451
  7. Pan G, Diamanti K, Cavalli M, Lara Gutierrez A, Komorowski J, Wadelius C. 2021. Multifaceted regulation of hepatic lipid metabolism by YY1. Life Sci. Alliance 4: e202000928.
  8. Li Y, Kasim V, Yan X, Li L, Meliala ITS, Huang C, et al. 2019. Yin Yang 1 facilitates hepatocellular carcinoma cell lipid metabolism and tumor progression by inhibiting PGC-1β-induced fatty acid oxidation. Theranostics 9: 7599-7615. https://doi.org/10.7150/thno.34931
  9. Zolova OE, Wight PA. 2011. YY1 negatively regulates mouse myelin proteolipid protein (Plp1) gene expression in oligodendroglial cells. ASN Neuro 3: e00067.
  10. Zhang XC, Liang HF, Luo XD, Wang HJ, Gu AP, Zheng CY, et al. 2018. YY1 promotes IL-6 expression in LPS-stimulated BV2 microglial cells by interacting with p65 to promote transcriptional activation of IL-6. Biochem. Biophys. Res. Commun. 502: 269-275. https://doi.org/10.1016/j.bbrc.2018.05.159
  11. Jian D, Dai B, Hu X, Yao Q, Zheng C, Zhu J. 2017. Ox-LDL increases microRNA-29a transcription through upregulating YY1 and STAT1 in macrophages. Cell Biol. Int. 41: 1001-1011. https://doi.org/10.1002/cbin.10803
  12. Ummarino D. 2017. Dyslipidaemia: anti-PCSK9 vaccines to halt atherosclerosis. Nat. Rev. Cardiol. 14: 442-443. https://doi.org/10.1038/nrcardio.2017.106
  13. Shapiro MD, Tavori H, Fazio S. 2018. PCSK9: from basic science discoveries to clinical trials. Circ. Res. 122: 1420-1438. https://doi.org/10.1161/CIRCRESAHA.118.311227
  14. Yurtseven E, Ural D, Baysal K, Tokgozoglu L. 2020. An update on the role of PCSK9 in atherosclerosis. J. Atheroscler. Thromb. 27: 909-918. https://doi.org/10.5551/jat.55400
  15. Momtazi-Borojeni AA, Jaafari MR, Badiee A, Banach M, Sahebkar A. 2019. Therapeutic effect of nanoliposomal PCSK9 vaccine in a mouse model of atherosclerosis. BMC Med. 17: 223.
  16. Ricci C, Ruscica M, Camera M, Rossetti L, Macchi C, Colciago A, et al. 2018. PCSK9 induces a pro-inflammatory response in macrophages. Sci. Rep. 8: 2267.
  17. Chan JC, Piper DE, Cao Q, Liu D, King C, Wang W, et al. 2009. A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc. Natl. Acad. Sci. USA 106: 9820-9825. https://doi.org/10.1073/pnas.0903849106
  18. Maxwell KN, Fisher EA, Breslow JL. 2005. Overexpression of PCSK9 accelerates the degradation of the LDLR in a post-endoplasmic reticulum compartment. Proc. Natl. Acad. Sci. USA 102: 2069-2074. https://doi.org/10.1073/pnas.0409736102
  19. Zhou S, Sun Y, Zhao K, Gao Y, Cui J, Qi L, et al. 2020. miR-21/PTEN pathway mediates the cardioprotection of geniposide against oxidized low-density lipoprotein-induced endothelial injury via suppressing oxidative stress and inflammatory response. Int. J. Mol. Med. 45: 1305-1316.
  20. Tsimikas S, Miyanohara A, Hartvigsen K, Merki E, Shaw PX, Chou MY, et al. 2011. Human oxidation-specific antibodies reduce foam cell formation and atherosclerosis progression. J. Am. College Cardiol. 58: 1715-1727. https://doi.org/10.1016/j.jacc.2011.07.017
  21. Gong M, Zhuo X, Ma A. 2017. STAT6 upregulation promotes M2 macrophage polarization to suppress atherosclerosis. Med. Sci. Monitor Basic Res. 23: 240-249. https://doi.org/10.12659/MSMBR.904014
  22. Solanki A, Bhatt LK, Johnston TP. 2018. Evolving targets for the treatment of atherosclerosis. Pharmacol. Ther. 187: 1-12. https://doi.org/10.1016/j.pharmthera.2018.02.002
  23. Ding Z, Pothineni NVK, Goel A, Luscher TF, Mehta JL. 2020. PCSK9 and inflammation: role of shear stress, pro-inflammatory cytokines, and LOX-1. Cardiovasc. Res. 116: 908-915. https://doi.org/10.1093/cvr/cvz313
  24. Fu W, Gao XP, Zhang S, Dai YP, Zou WJ, Yue LM. 2019. 17β-Estradiol inhibits PCSK9-mediated LDLR degradation through GPER/ PLC activation in HepG2 cells. Front. Endocrinol. 10: 930.
  25. Cui CJ, Jin JL, Guo LN, Sun J, Wu NQ, Guo YL, et al. 2020. Beneficial impact of epigallocatechingallate on LDL-C through PCSK9/ LDLR pathway by blocking HNF1α and activating FoxO3a. J. Transl. Med. 18: 195.
  26. Yin R, Zhu X, Wang J, Yang S, Ma A, Xiao Q, et al. 2019. MicroRNA-155 promotes the ox-LDL-induced activation of NLRP3 inflammasomes via the ERK1/2 pathway in THP-1 macrophages and aggravates atherosclerosis in ApoE-/- mice. Ann. Palliat. Med. 8: 676-689. https://doi.org/10.21037/apm.2019.10.11
  27. Ding Z, Wang X, Liu S, Zhou S, Kore RA, Mu S, et al. 2020. NLRP3 inflammasome via IL-1β regulates PCSK9 secretion. Theranostics 10: 7100-7110. https://doi.org/10.7150/thno.45939
  28. Camell CD, Sander J, Spadaro O, Lee A, Nguyen KY, Wing A, et al. 2017. Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. Nature 550: 119-123. https://doi.org/10.1038/nature24022
  29. Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, et al. 2017. Evolocumab and clinical outcomes in patients with cardiovascular disease. New Eng. J. Med. 376: 1713-1722. https://doi.org/10.1056/NEJMoa1615664
  30. Bernelot Moens SJ, Neele AE, Kroon J, van der Valk FM, Van den Bossche J, Hoeksema MA, et al. 2017. PCSK9 monoclonal antibodies reverse the pro-inflammatory profile of monocytes in familial hypercholesterolaemia. Eur. Heart J. 38: 1584-1593. https://doi.org/10.1093/eurheartj/ehx002
  31. Giunzioni I, Tavori H, Covarrubias R, Major AS, Ding L, Zhang Y, et al. 2016. Local effects of human PCSK9 on the atherosclerotic lesion. J. Pathol. 238: 52-62. https://doi.org/10.1002/path.4630
  32. Li J, Liang X, Wang Y, Xu Z, Li G. 2017. Investigation of highly expressed PCSK9 in atherosclerotic plaques and ox-LDL-induced endothelial cell apoptosis. Mol. Med. Rep. 16: 1817-1827. https://doi.org/10.3892/mmr.2017.6803
  33. Li S, Guo YL, Xu RX, Zhang Y, Zhu CG, Sun J, et a. 2014. Association of plasma PCSK9 levels with white blood cell count and its subsets in patients with stable coronary artery disease. Atherosclerosis 234: 441-445. https://doi.org/10.1016/j.atherosclerosis.2014.04.001
  34. Li S and Li JJ. 2015. PCSK9: a key factor modulating atherosclerosis. J. Atheroscler. Thromb. 22: 221-230. https://doi.org/10.5551/jat.27615
  35. Tang ZH, Li TH, Peng J, Zheng J, Li TT, Liu LS, et al. 2019. PCSK9: a novel inflammation modulator in atherosclerosis? J. Cell Physiol. 234: 2345-2355. https://doi.org/10.1002/jcp.27254
  36. Walley KR, Thain KR, Russell JA, Reilly MP, Meyer NJ, Ferguson JF, et al. 2014. PCSK9 is a critical regulator of the innate immune response and septic shock outcome. Sci. Transl. Med. 6: 258ra143.
  37. Ding Z, Liu S, Wang X, Deng X, Fan Y, Shahanawaz J, et al. 2015. Cross-talk between LOX-1 and PCSK9 in vascular tissues. Cardiovasc. Res. 107: 556-567. https://doi.org/10.1093/cvr/cvv178