• Title/Summary/Keyword: cell metabolic activity

Search Result 276, Processing Time 0.035 seconds

Inhibition of Candida albicans Biofilm Formation by Coptidis chinensis through Damaging the Integrity of Cell Membrane (세포막손상 유발로 인한 황련의 캔디다 바이오필름 형성 억제)

  • Kim, Younhee
    • Korean Journal of Microbiology
    • /
    • v.49 no.1
    • /
    • pp.17-23
    • /
    • 2013
  • Candida biofilms are organized microbial communities growing on the surfaces of host tissues or indwelling medical devices, and the biofilms show enhanced resistance against the conventional antifungal agents. The roots of Coptidis chinensis have been widely used for medicinal purposes in East Asia. The present study was aimed to assess the effect of C. chinensis aqueous extract upon preformed biofilms of 10 clinical Candida albicans isolates and the antifungal activities which contribute to inhibit the C. albicans biofilm formation. Its effect on preformed biofilms was judged using XTT [2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide)] reduction assay, and metabolic activity of all tested strains was reduced significantly ($57.3{\pm}14.7%$) at $98{\mu}g/ml$ of the C. chinensis extract. The extract damaged the cell membrane of C. albicans which was analyzed by fluorescein diacetate and propidium iodide staining. The anticandidal activity was fungicidal, and the extract obstructed the adhesion of C. albicans biofilms to polystyrene surfaces, arrested C. albicans cells at $G_o/G_1$ as well, and reduced the growth of biofilms or budding yeasts finally. The data suggest that C. chinensis has multiple antifungal effects on target fungi resulting in preventing the formation of biofilms. Therefore, C. chinensis holds great promise for exploring antifungal agents from natural products in treating and eliminating biofilm-associated Candida infection.

Recent Research Trends in Thioredoxin Reductase-targeted Anticancer Therapy (Thioredoxin reductase를 표적으로 하는 항암 최신 연구 동향)

  • Hwangbo, Hyun;Lee, Hyesook;Cheong, JaeHun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.32 no.1
    • /
    • pp.63-69
    • /
    • 2022
  • The thioredoxin reductase (TrxR) system is essential for cell survival and function by playing a pivotal role in maintaining homeostasis of cellular redox and regulating signal transduction pathways. The TrxR system comprises thioredoxin (Trx), TrxR, and nicotinamide adenine dinucleotide phosphate. Trx reduced by the catalytic reaction of the TrxR enzyme reduces downstream proteins, resulting in protection against oxidative stress and regulation of cell differentiation, growth, and death. Cancer cells survive by improving their intracellular antioxidant capacity to eliminate excessively generated reactive oxygen species (ROS) due to infinite cell proliferation and a high metabolic rate. Therefore, cancer cells have high dependence and sensitivity to antioxidant systems, suggesting that focusing on TrxR, a representative antioxidant system, is a potential strategy for cancer therapy. Several studies have revealed that TrxR is expressed at high levels in various types of cancers, and research on anticancer activity targeting the TrxR system is increasing. In this review, we discuss the feasibility and value of the TrxR system as a strategy for anticancer activity research by examining the relationship between the function of the intracellular TrxR system and the development and progression of cancer, considering the anticancer activity and mechanism of TrxR inhibitors.

Effects of Taebong-eum on Learning and Memory Function in the Cholinergic Cell Damaged Rat (태봉음이 콜린성 신경세포손상 백서의 학습 및 기억에 미치는 영향)

  • Park Jong Soo;Chi Gyoo Yong;Eom Hyun Sup
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.1
    • /
    • pp.50-56
    • /
    • 2003
  • This research was done to make the effective prescription and cope with various senile dementia. So Sprague-Dawley rats were injected with ibotenate to make a damage on learning and memory functions. At first acquisition test and retention rest were done in the Morris water maze. And to evaluate the effects of the sample drug(TBM) on choline acetyltranferase and acetylcholine esterase, immunoreactive measurement and enzymatic activity measuring were carried out. The ibotenic acid were injected to hippocampus CA1 and CA3 area. The results were as following. TBM improved the learning ability in the acquisition test and memory function in the retention test significantly. And TBM increased the level of ChAT which is synthesizing acetylcholine in CA3 area, and at the same time it increased the level of AChE which is resolving acetylcholine. These results show that T8M improved the cholinergic catabolism and anabolism, and the increment of metabolic activity of cholinergic system. In other words, it contributes to the recovery of damaged learning and memory function by ibotenic acid. So it can be concluded that TBM will be helpful to cholinergic brain damage induced by primary or senile reduction of acetylcholine secretive activity.

Biotransformation of Pueraria lobata Extract with Lactobacillus rhamnosus vitaP1 Enhances Anti-Melanogenic Activity

  • Kwon, Jeong Eun;Lee, Jin Woo;Park, Yuna;Sohn, Eun-Hwa;Choung, Eui Su;Jang, Seon-A;Kim, Inhye;Lee, Da Eun;Koo, Hyun Jung;Bak, Jong Phil;Lee, Sung Ryul;Kang, Se Chan
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.22-31
    • /
    • 2018
  • Isoflavone itself is less available in the body without the aid of intestinal bacteria. In this study, we searched for isoflavone-transforming bacteria from human fecal specimens (n = 14) using differential selection media. Isoflavone-transforming activity as the production of dihydrogenistein and dihydrodaidzein was assessed by high-performance liquid chromatography and we found Lactobacillus rhamnosus, named L. rhamnosus vitaP1, through 16S rDNA sequence analysis. Extract from Pueraria lobata (EPL) and soy hypocotyl extract were fermented with L. rhamnosus vitaP1 for 24 and 48 h at $37^{\circ}C$. Fermented EPL (FEPL) showed enhanced anti-tyrosinase activity and antioxidant capacities, important suppressors of the pigmentation process, compared with that of EPL (p < 0.05). At up to $500{\mu}g/ml$ of FEPL, there were no significant cell cytotoxicity and proliferation on B16-F10 melanoma cells. FEPL ($100{\mu}g/ml$) could highly suppress the content of melanin and melanosome formation in B16-F10 cells. In summary, Lactobacillus rhamnosus vitaP1 was found to be able to biotransform isoflavones in EPL. FEPL showed augmented anti-melanogenic potential.

Metabolic Profiling and Biological Activities of Bioactive Compounds Produced by Pseudomonas sp. Strain ICTB-745 Isolated from Ladakh, India

  • Kama, Ahmed;Shaik, Anver Basha;Kumar, C. Ganesh;Mongolla, Poornima;Rani, P. Usha;Krishna, K.V.S. Rama;Mamidyala, Suman Kumar;Joseph, Joveeta
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.69-79
    • /
    • 2012
  • In an ongoing survey of the bioactive potential of microorganisms from Ladakh, India, the culture medium of a bacterial strain of a new Pseudomonas sp., strain ICTB-745, isolated from an alkaline soil sample collected from Leh, Ladakh, India, was found to contain metabolites that exhibited broad-spectrum antimicrobial and biosurfactant activities. Bioactivity-guided purification resulted in the isolation of four bioactive compounds. Their chemical structures were elucidated by $^1H$ and $^{13}C$ NMR, 2D-NMR (HMBC, HSQC, $^1H$,$^1H$-COSY, and DEPT-135), FT-IR, and mass spectroscopic methods, and were identified as 1-hydroxyphenazine, phenazine-1-carboxylic acid (PCA), rhamnolipid-1 (RL-1), and rhamnolipid-2 (RL-2). These metabolites exhibited various biological activities like antimicrobial and efficient cytotoxic potencies against different human tumor cell lines such as HeLa, HepG2, A549, and MDA MB 231. RL-1 and RL-2 exhibited a dose-dependent antifeedant activity against Spodoptera litura, producing about 82.06% and 73.66% antifeedant activity, whereas PCA showed a moderate antifeedant activity (63.67%) at 60 ${\mu}g/cm^2$ area of castor leaf. Furthermore, PCA, RL-1, and RL-2 exhibited about 65%, 52%, and 47% mortality, respectively, against Rhyzopertha dominica at 20 ${\mu}g/ml$. This is the first report of rhamnolipids as antifeedant metabolites against Spodoptera litura and as insecticidal metabolites against Rhyzopertha dominica. The metabolites from Pseudomonas sp. strain ICTB-745 have interesting potential for use as a biopesticide in pest control programs.

Anti-hyperlipidemic activity of Rhynchosia nulubilis seeds pickled with brown rice vinegar in mice fed a high-fat diet

  • Park, Ki-Moon;Lee, Seung Ho
    • Nutrition Research and Practice
    • /
    • v.7 no.6
    • /
    • pp.453-459
    • /
    • 2013
  • The abnormal content of blood lipids often results in metabolic diseases, such as hyperlipidemia and obesity. Many agents, including natural sources from traditional food, have been developed to regulate the blood lipid contents. In this study, we examined the anti-hyperlipidemic activity of Rhynchosia nulubilis seeds pickled with brown rice vinegar (RNSpBRV), a Korean traditional pickled soybean food. Since RNSpBRV is made of R. nulubilis seeds (RNS) soaked in brown rice vinegar (BRV), we compared the anti-adipogenic activity between RNS, BRV and solid fraction of RNSpBRV (SF-RNSpBRV), liquid fraction of RNSpBRV (LF-RNSpBRV). For this, the inhibitory effect of lipid accumulation in 3T3-L1 adipocyte was checked by adding methanol extracts of mixed RNS and BRV, LF-RNSpBRV, and SF-RNSpBRV. The addition of each methanol extract up to 1 mg/ml showed no cytotoxicity on 3T3-L1 adipocyte, and approximately 20% of the lipid droplet formation was suppressed with the methanol extract of BRL or SF-RNSpBRV. The highest suppression (42.1%) was achieved with LF-RNSpBRV. In addition, mice fed a high fat diet (HFD) supplemented with 5% RNSpBRV powder led to increased high density lipoprotein (HDL) cholesterol and lower blood glucose, triglyceride, and total cholesterol compared to mice fed with a HFD diet only. Interestingly, the size of the epididymis cells gradually decreased in HFD + 1% RNSpBRV and HFD + 5% RNSpBRV-fed mice if compared those of HFD-fed mice. Taken together, these results provide evidence that RNSpBRV has a regulatory role in lipid metabolism that is related to hyperlipidemia.

Effects of Foeniculi fructus Water Extracts on Activities of Key Enzymes of Lipid Metabolism Related with Obesity (회향종자(Foeniculi fructus)의 물 추출물이 비만과 관련된 지질대사 효소의 활성에 미치는 효과)

  • Seo, Dong-Joo;Kim, Tae-Hyuck;Kim, Hyun-Sook;Choe, Myeon
    • Korean Journal of Plant Resources
    • /
    • v.24 no.2
    • /
    • pp.181-188
    • /
    • 2011
  • This study was carried out to estimate beneficial effects of Foeniculi fructus water extract on activities of key enzymes such as lipoprotein lipase (LPL), acyl-CoA synthetase (ACS), and hormone sensitive lipase (HSL) on lipid metabolism related with obesity. LPL and ACS were extracted from the epididymal adipose tissue and liver of C57BL/6J normal and obese mouse. Foeniculi fructus water extract treatment significantly reduced the activity of normal and obese LPL. When 100 ppm of Foeniculi fructus water extracts were tested, they decreased obese LPL activity by 12.0%. Foeniculi fructus water extract activated obese ACS activity by 7-fold compared with control at 1,000 ppm concentration. Expression of HSL mRNA was increased in Foeniculi fructus water extracts treated cells compared with non treated cells. All things considered, Foeniculi fructus water extract efficiently inhibits the influx of fatty acid into the cell, and activates metabolic process that uses fatty acids flowing as an energy source. Thus, it suggest that Foeniculi fructus water extract may have great potential as a novel anti-obesity agent.

Anti-proliferating Effects and Gene Expression Profiles through Antioxidant Activity of Porphyra yezoensis Fractions on Human HepG2 Cell Lines (인간 간암세포주 HepG2에서 김 분획물의 항산화 활성을 통한 증식 억제 및 유전자 발현 양상)

  • Oh, Youn Jeong;Kim, Jung Min;Bang, In Seok
    • Journal of Life Science
    • /
    • v.28 no.2
    • /
    • pp.176-186
    • /
    • 2018
  • In this study, the total polyphenol contents, antioxidant activities and anti-proliferation effects of HepG2 cell lines in organic slovent fractions obtained from the main methanolic extract of P. yezoensis were analyzed. The polyphenol content of the $CHCl_3$ fraction was $10.3{\mu}g/mg$, slightly less than $13.08{\mu}g/mg$ of the water fraction, but $ED_{50}$ estimated by measuring DPPH free radical scavenging activity exhibited the highest $16.96{\mu}g/ml$ in the $CHCl_3$ fraction. The proliferation effects of $CHCl_3$ and EtOAc fraction toward HepG2 cells inhibited in a dose-dependent manner, showed 90% inhibition when treated for 24 hr at $900{\mu}g/ml$ of $CHCl_3$ fraction. Meanwhile gene expression patterns in HepG2 cells treated $50{\mu}g/ml$ of $CHCl_3$ fraction were identified with microarray analysis. Concerning the efficacy of P. yezoensis, gene ontology analysis explored the genes associated with response to molecule of bacterial origin, vitamin D metabolic process, and response to nutrient. Thus IL6R, CYP1A1 were selected as significant genes based on expression patterns of HepG2 cells, and pathway analysis indicates that ARNT might be considered as a upstream regulator. Also, expression analysis of IL6R and CYP1A1, activity of upstream regulator ARNT in HepG2 cells was confirmed based on Western blotting analysis at the protein level after being treated with 50 and $100{\mu}g/ml$ of $CHCl_3$ fraction.

Effects of Quercetin on $TNF-{\alpha}-Induced$ Cytokine Secretion and Nitric Oxide Production in MC3T3-E1 Osteoblastic Cells

  • Jeon, Young-Mi;Kim, Beom-Tae;Son, Young-Ok;Kook, Sung-Ho;Lee, Keun-Soo;Kim, So-Soon;Lim, Ji-Young;Kim, Jong-Ghee;Lee, Jeong-Chae
    • Natural Product Sciences
    • /
    • v.11 no.2
    • /
    • pp.103-108
    • /
    • 2005
  • Bioflavone quercetin is thought to have an important role to inhibit bone loss by affecting osteoclastogenesis and regulating a number of systemic and local factors such as hormones and cytokines. In this study, we examined how quercetin acts on cytokine production and mineralization of osteoblast in the presence of tumor necrosis factor-alpha $(TNF-{\alpha})$ which has been known to play a pivotal role in bone metabolic diseases. Quercetin inhibited $TNF-{\alpha}-induced$ secretion of $IFN-{\gamma}$ and IL-6 in differentiated MC3T3-E1 cells. As indicated by the markers that are characteristics of the osteoblast phenotype, such as alkaline phosphatase (ALP) activity and calcium deposition, quercetin treatment slightly prevented the $TNF-{\alpha}-induced$ dramatic inhibition of differentiation and mineralization of MC3T3-E1 cells. Further, quercetin inhibited the production of nitric oxide induced by $TNF-{\alpha}$ in the cells. Collectively, our findings indicate that quercetin inhibites $TNF-{\alpha}-induced$ secretion of inflammatory cytokines in differentiated MC3T3-E1 cells without any cytotoxic effects.

Functional Amino Acids and Fatty Acids for Enhancing Production Performance of Sows and Piglets

  • Kim, Sung Woo;Mateo, Ronald D.;Yin, Yu-Long;Wu, Guoyao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.2
    • /
    • pp.295-306
    • /
    • 2007
  • The growth and health of the fetus and neonate are directly influenced by the nutritional and physiological status of sows. Sows are often under catabolic conditions due to restrict feeding program during pregnancy and low voluntary feed intake during lactation. The current restrict feeding program, which aims at controlling energy intake during gestation, results in an inadequate supply of dietary protein for fetal and mammary gland growth. Low voluntary feed intake during lactation also causes massive maternal tissue mobilization. Provision of amino acids and fatty acids with specific functions may enhance the performance of pregnant and lactating sows by modulating key metabolic pathways. These nutrients include arginine, branched-chain amino acids, glutamine, tryptophan, proline, conjugated linoleic acids, docosahexaenoic acid, and eicosapentaenoic acid, which can enhance conception rates, embryogenesis, blood flow, antioxidant activity, appetite, translation initiation for protein synthesis, immune cell proliferation, and intestinal development. The outcome is to improve sow reproductive performance as well as fetal and neonatal growth and health. Dietary supplementation with functional amino acids and fatty acids holds great promise in optimizing nutrition, health, and production performance of sows and piglets. (Supported by funds from Texas Tech, USDA, NLRI-RDA-Korea, and China NSF).