• Title/Summary/Keyword: cell loss

Search Result 2,243, Processing Time 0.024 seconds

Observation of Water Consumption in Zn-air Secondary Batteries

  • Yang, Soyoung;Kim, Ketack
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.381-386
    • /
    • 2019
  • Zn-air battery uses oxygen from the air, and hence, air holes in it are kept open for cell operation. Therefore, loss of water by evaporation through the holes is inevitable. When the water is depleted, the battery ceases to operate. There are two water consumption routes in Zn-air batteries, namely, active path (electrolysis) and passive path (evaporation and corrosion). Water loss by the active path (electrolysis) is much faster than that by the passive path during the early stage of the cycles. The mass change by the active path slows after 10 h. In contrast, the passive path is largely constant, becoming the main mass loss path after 10 h. The active path contributes to two-thirds of the electrolyte consumption in 24 h of cell operation in 4.0 M KOH. Although water is an important component for the cell, water vapor does not influence the cell operation unless the water is nearly depleted. However, high oxygen concentration favors the discharge reaction at the cathode.

Cell Loss and Delay Control Scheme using Windows in ATM Networks (비동기식망에서 windows를 이용한 손실 및 지연제어 기법)

  • Kim, Nam-Hee;Kim, Byun-Gon;Cho, Hae-Seong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.05a
    • /
    • pp.405-408
    • /
    • 2006
  • Design of appropriate control schemes that can satisfy the cell loss, delay requirements with various traffic specification for B-ISDN is an extremely important challenging problem. In this paper, we proposes a priority control scheme with a window counter and a cell counter per each type of class. The priority control for satisfying required service quality is performed with delay/loss factor obtained by comparing window counter with cell counter. The performance of proposed control scheme is estimated by computer simulation.

  • PDF

Queueing Analysis for an ATM Multiplexer Loader by CBR and ON/OFF Traffic Sources (CBR과 ON/OFF 트레픽원이 혼합된 ATM 다중화기에 대한 큐잉 분석)

  • 김승환;박진수
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.6
    • /
    • pp.9-17
    • /
    • 1994
  • ATM (Asynchronous Transfer Mode) has a fixed-length packet transport scheme. It is one of the promising proposals in B-ISDN.Since the packet length is fixed, it can be potentially to perform the various service to users. In this paper, a queueing model for an ATM multip`exer loaded by CBR and ON/OFF input sources is considered, and the two-queue system which each type of input sources has a queue with a finite capacity is analyzed. The cell loss probabilities for a performance measures of ATM multiplexer are derived, and are also evaluated through numerical examples. As a result, the cell loss probability of ON/OFF sources for the queue size is rapidly decreased when the multiplexed number and burstiness are increased. Since cells of the CBR source have lower priority than cells of the ON/OFF source, cell loss probabilities of CBR sources are accordingly high independently of CBR cell arrival rate when the number of CBR sources is large.

  • PDF

Study on the cathode delamination of solid oxide fuel cell (고체산화물 연료전지의 공기극 박리 현상에 관한 연구)

  • Park, Kwang-Jin;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.139-142
    • /
    • 2009
  • In this study, the performance degradation of SOFC single cell caused by the delamination between a cathode and an electrolyte is investigated. As the delamination rate increases, the voltage sharply decreases due to the decrease of reaction sites and losses increase. The current is concentrated to the intact area so that the current density is increased and the ohmic loss and the activation loss become higher. Most part of loss is due to the ohmc loss of electrolyte.

  • PDF

The Method of Handoff Using CLP on the WATM Network (무선 ATM에서 CLP를 이용한 핸드오프 방식)

  • 김준배;황재문;강경식
    • Journal of the Korea Society of Computer and Information
    • /
    • v.6 no.3
    • /
    • pp.44-49
    • /
    • 2001
  • In general. requirements for QoS are different according to the type of services in wireline and wireless ATM, and real-time video service is more sensitive to cell transmission delay than to cell loss. Existing handoff schemes emphasizing prevention of cell loss had limitations in cell transmission delay to satisfy QoS. In this paper, a novel scheme to transmit ATM cells with low CLP (when CLP = 0) prior to others and discarding cells with high CLP (when CLP = 1) in ATM cell header among cells to be forwarded during handoffs in real-time VBR service is proposed. The proposed scheme is proven to be suitable for the satisfaction of QoS and appropriate for fast handoffs by giving high CLP value to less meaningful MPEG frames through simulations.

  • PDF

Traffic Characteristics and Adaptive model analysis in ATM Network (ATM망의 트래픽 특성과 적응모델 분석)

  • 김영진;김동일
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.4
    • /
    • pp.583-592
    • /
    • 1998
  • In this paper, the cell loss rate is analyzed in terms of the input traffic stream of different speed in ATM network. The cell loss rate is calculated by birth-death process of Leaky-Bucket mechanism as the representative algorithm of usage parameter control. The cell loss rate assumed 2-state MMPP input process to be birth-death process by considering the character of token pool about finite capacity queue. The results from numerical analysis show that the cell loss rate decreases abruptly according to the buffer size increase. The computer simulation by SIMSCRIPT II.5 has been done and compared with on/off input source case to verify the analysis results.

  • PDF

Z-Source Inverter with SiC Power Semiconductor Devices for Fuel Cell Vehicle Applications

  • Aghdam, M. Ghasem Hosseini
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.606-611
    • /
    • 2011
  • Power electronics is a key technology for electric, hybrid, plug-in hybrid, and fuel cell vehicles. Typical power electronics converters used in electric drive vehicles include dc/dc converters, inverters, and battery chargers. New semiconductor materials such as silicon carbide (SiC) and novel topologies such as the Z-source inverter (ZSI) have a great deal of potential to improve the overall performance of these vehicles. In this paper, a Z-source inverter for fuel cell vehicle application is examined under three different scenarios. 1. a ZSI with Si IGBT modules, 2. a ZSI with hybrid modules, Si IGBTs/SiC Schottky diodes, and 3. a ZSI with SiC MOSFETs/SiC Schottky diodes. Then, a comparison of the three scenarios is conducted. Conduction loss, switching loss, reverse recovery loss, and efficiency are considered for comparison. A conclusion is drawn that the SiC devices can improve the inverter and inverter-motor efficiency, and reduce the system size and cost due to the low loss properties of SiC devices. A comparison between a ZSI and traditional PWM inverters with SiC devices is also presented in this paper. Based on this comparison, the Z-source inverter produces the highest efficiency.

Multi-layer Front Electrode Formation to Improve the Conversion Efficiency in Crystalline Silicon Solar Cell (결정질 실리콘 태양전지의 효율 향상을 위한 다층 전면 전극 형성)

  • Hong, Ji-Hwa;Kang, Min Gu;Kim, Nam-Soo;Song, Hee-Eun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.12
    • /
    • pp.1015-1020
    • /
    • 2012
  • Resistance of the front electrode is the highest proportion of the ingredients of the series resistance in crystalline silicon solar cell. While resistance of the front electrode is decreased with larger area, it induces the optical loss, causing the conversion efficiency drop. Therefore the front electrode with high aspect ratio increasing its height and decreasing is necessary for high-efficiency solar cell in considering shadowing loss and resistance of front electrode. In this paper, we used the screen printing method to form high aspect ratio electrode by multiple printing. Screen printing is the straightforward technology to establish the electrodes in silicon solar cell fabrication. The several printed front electrodes with Ag paste on silicon wafer showed the significantly increased height and slightly widen finger. As a result, the resistance of the front electrode was decreased with multiple printing even if it slightly increased the shadowing loss. We showed the improved electrical characteristics for c-Si solar cell with repeatedly printed front electrode by 0.5%. It lays a foundation for high efficiency solar cell with high aspect ratio electrode using screen printing.

The Traffic Control Mechanisms and Performance Analysis of Multimedia Synchronization Cell (멀티미디어 동기셀의 트래픽 제어 기법 및 성능 분석)

  • Jeon, Byeong-Ho;Kim, Tae-Gyun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.2
    • /
    • pp.305-314
    • /
    • 1996
  • In the paper, we divide the ATM cells generated by multimedia systems that want to transmit multimedia informations over B-ISDN into two categories:i)a media cell with a media information and ii) a synchronization cell with a synchronization information. We induce a media cell loss equation and a synchroni- zation cell loss equation based on probability distribution functions with on-off source as an input traffic model. In order to meet the requirements of real-time and integrity of multimedia informations, multimedia synchronization cells should provide the delay-sensitive and the loss-sensitive requirements. A traffic control mechanism needs to satisfy above requirements. According to the performance evaluation by a traffic control model simulation, we describe both spatial priority for minimizing the synchronization cell loss and temporal priority for reducing the synchronization cell delay must be applied simultaneously.

  • PDF

Performance analysis of priority control mechanism with cell transfer ratio and discard threshold in ATM switch (ATM 스위치에서 폐기 임계치를 가진 셀전송비율 제어형 우선순위 제어방식의 성능 분석)

  • 박원기;김영선;최형진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.3
    • /
    • pp.629-642
    • /
    • 1996
  • ATM switch handles the traffic for a wide range of appliations with different QOS(Quality-of-Service) requirements. In ATM switch, the priority control mechanism is needed to improve effectively the required QOS requirements. In this paper, we propose a priority control mechanism using the cell transfer ratio type and discard threshold in order to archive the cell loss probability requirement and the delay requirement of each service class. The service classes of our concern are the service class with high time priority(class 1) and the service class with high loss priority control mechanism, cells for two kind of service classes are stored and processed within one buffer. In case cells are stored in the buffer, cells for class 2 are allocated in the stored and processed within one buffer. In case cells are stored in the buffer, cells for class 2 are allocated in the shole range of the buffer and cells for class 1 are allocated up to discard threshold of the buffer. In case cells in the buffer are transmitted, one cell for class 1 is transmitted whenever the maximum K cells for class 2 are transmitted consecutively. We analyze the time delay and the loss probability for each class of traffic using Markov chain. The results show that the characteristics of the mean cell delay about cells for class 1 becomes better and that of the cell loss probability about cells for class 2 becomes better by selecting properly discard threshold of the buffer and the cell transfer ratio according to the condition of input traffic.

  • PDF