Browse > Article
http://dx.doi.org/10.33961/jecst.2019.00192

Observation of Water Consumption in Zn-air Secondary Batteries  

Yang, Soyoung (Department of Chemistry & Energy Engineering, Sangmyung University)
Kim, Ketack (Department of Chemistry & Energy Engineering, Sangmyung University)
Publication Information
Journal of Electrochemical Science and Technology / v.10, no.4, 2019 , pp. 381-386 More about this Journal
Abstract
Zn-air battery uses oxygen from the air, and hence, air holes in it are kept open for cell operation. Therefore, loss of water by evaporation through the holes is inevitable. When the water is depleted, the battery ceases to operate. There are two water consumption routes in Zn-air batteries, namely, active path (electrolysis) and passive path (evaporation and corrosion). Water loss by the active path (electrolysis) is much faster than that by the passive path during the early stage of the cycles. The mass change by the active path slows after 10 h. In contrast, the passive path is largely constant, becoming the main mass loss path after 10 h. The active path contributes to two-thirds of the electrolyte consumption in 24 h of cell operation in 4.0 M KOH. Although water is an important component for the cell, water vapor does not influence the cell operation unless the water is nearly depleted. However, high oxygen concentration favors the discharge reaction at the cathode.
Keywords
Zn-air Battery; Water Consumption; Electrolysis; Electrolyte;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Kim, G. Jeong, Y.U. Kim, J.H. Kim, C.M. Park, H.J. Sohn, Chem. Soc. Rev., 2013, 42(23), 9011-9034.   DOI
2 J.E. Knutsen, Brit. J. Audiol., 1982, 16(3), 189-191.   DOI
3 L.F. Arenas, A. Loh, D.P. Trudgeon, X. Li, C. Ponce de Leon, F.C. Walsh, Renew. Sust. Energ. Rev., 2018, 90, 992-1016.   DOI
4 E. Deiss, F. Holzer, O. Haas, Electrochim. Acta, 2002, 47(25), 3995-4010.   DOI
5 B. Hwang, E.-S. Oh, K. Kim, Electrochim. Acta, 2016, 216, 484-489.   DOI
6 Y. Mizutani, J. Appl. Polym. Sci., 1996, 61(5), 735-739.   DOI
7 H. Omidian, S.A. Hashemi, P.G. Sammes, I. Meldrum, Polymer, 1999, 40(7), 1753-1761.   DOI
8 D. Lee, H.W. Kim, J.M. Kim, K.H. Kim, S.Y. Lee, ACS Appl. Mater. Interfaces, 2018, 10(26), 22210-22217.   DOI
9 G.M. Wu, S.J. Lin, C.C. Yang, J. Membr. Sci., 2006, 280(1-2), 802-808.   DOI
10 X. Zhu, H. Yang, Y. Cao, X. Ai, Electrochim. Acta, 2004, 49(16), 2533-2539.   DOI
11 S. Liu, W. Han, B. Cui, X. Liu, F. Zhao, J. Stuart, S. Licht, J. Power Sources, 2017, 342, 435-441.   DOI
12 M. Kar, B. Winther-Jensen, M. Armand, T.J. Simons, O. Winther-Jensen, M. Forsyth, D.R. MacFarlane, Electrochim. Acta, 2016, 188, 461-471.   DOI
13 S. Qu, Z. Song, J. Liu, Y. Li, Y. Kou, C. Ma, X. Han, Y. Deng, N. Zhao, W. Hu, C. Zhong, Nano Energy, 2017, 39, 101-110.   DOI
14 M.J. Tan, B. Li, P. Chee, X. Ge, Z. Liu, Y. Zong, X.J. Loh, J. Power Sources, 2018, 400, 566-571.   DOI
15 H.F. Wang, C. Tang, B. Wang, B.Q. Li, X. Cui, Q. Zhang, Energy Storage Mater., 2018, 15, 124-130.
16 W. Ni, S. Liu, C. Du, Y. Fei, Y. He, X. Ma, L. Lu, Y. Deng, Int. J. Hydrogen Energy, 2017, 42(30), 19019-19027.   DOI
17 E. Malone, M. Berry, H. Lipson, Rapid Prototyping J., 2008, 14(3), 128-140.   DOI
18 A.L. Zhu, D. Duch, G.A. Roberts, S.X.X. Li, H.J. Wang, K. Duch, E. Bae, K.S. Jung, D. Wilkinson, S.A. Kulinich, ChemElectroChem, 2015, 2(1), 134-142.   DOI
19 H. Yang, J. Power Sources, 2004, 128(1), 97-101.   DOI
20 H.I. Kim, E.J. Kim, S.J. Kim, H.C. Shin, J. Appl. Electrochem., 2015, 45(4), 335-342.   DOI
21 R. Thimmappa, M.C. Devendrachari, A.R. Kottaichamy, S. Aralekallu, M. Gautam, S.P. Shafi, Z. Manzoor Bhat, M.O. Thotiyl, J. Phys. Chem. C, 2017, 121(7), 3707-3713.   DOI
22 J. Dobryszycki, S. Biallozor, Corros. Sci., 2001, 43(7), 1309-1319.   DOI
23 M. Liang, H. Zhou, Q. Huang, S. Hu, W. Li, J. Appl. Electrochem., 2011, 41(8), 991-997.   DOI
24 A.A. Mohamad, J. Power Sources, 2006, 159(1), 752-757.   DOI
25 S.Z. Liu, W. Han, B.C. Cui, X.J. Liu, F.L. Zhao, J. Stuart, S. Licht, J. Power Sources, 2017, 342, 435-441.   DOI
26 S. Wang, J. Qin, T. Meng, M. Cao, Nano Energy, 2017, 39, 626-638.   DOI
27 J. Bai, T. Meng, D. Guo, S. Wang, B. Mao, M. Cao, ACS Appl. Mater. Interfaces, 2018, 10(2), 1678-1689.   DOI
28 A.R. Mainar, E. Iruin, L.C. Colmenares, A. Kvasha, I. de Meatza, M. Bengoechea, O. Leonet, I. Boyano, Z. Zhang, J.A. Blazquez, J. Energy Storage, 2018, 15, 304-328.   DOI
29 B. Amini Horri, M. Choolaei, A. Chaudhry, H. Qaalib, Int. J. Hydrogen Energy, 2019, 44(1), 72-81.   DOI