• Title/Summary/Keyword: cell load balancing

Search Result 41, Processing Time 0.034 seconds

Optimal Cell Selection Scheme for Load Balancing in Heterogeneous Radio Access Networks (이종 무선 접속망에서의 과부하 분산을 위한 최적의 셀 선정 기법)

  • Lee, HyungJune
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.12
    • /
    • pp.1102-1112
    • /
    • 2012
  • We propose a cell selection and resource allocation scheme that assigns users to nearby accessible cells in heterogeneous wireless networks consisting of macrocell, femtocells, and Wi-Fi access points, under overload situation. Given the current power level of all accessible cells nearby users, the proposed scheme finds all possible cell assignment mappings of which user should connect to which cell to maximize the number of users that the network can accommodate at the same time. We formulate the cell selection problem with heterogeneous cells into an optimization problem of binary integer programming, and compute the optimal solution. We evaluate the proposed algorithm in terms of network access failure compared to a local ad-hoc based cell selection scheme used in practical systems using network level simulations. We demonstrate that our cell selection algorithm dramatically reduces network access failure in overload situation by fully leveraging network resources evenly across heterogeneous networks. We also validate the practical feasibility in terms of computational complexity of our binary integer program by measuring the computation time with respect to the number of users.

Control of DC-side Voltage Unbalance among Phases in Multi-level H-Bridge STATCOM with Unbalanced Load (불평형부하를 가지는 다단 H-bridge STATCOM에서 상간 직류전압 불평형의 제어)

  • Kwon, Byung-Ki;Jung, Seung-Ki;Kim, Tae-Hyeong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.332-341
    • /
    • 2014
  • A cascaded H-bridge multi-level STATCOM(STATic synchronous COMpensator), which is composed of many cell inverters with independent dc-sources, generates inevitably dc-side voltage unbalance among phases when it compensates unbalanced load. It comes from the difference of flowing active power in each phase when this compensator makes negative-sequence current to eliminate the unbalance of source-side current. However, this unbalance can be controlled by injecting zero-sequence current which is decoupled with grid currents, so the compensator can work well during this balancing process. Both a feedback control algorithm, which produces zero-sequence current proportional to dc-side voltage unbalance within each phase, and a feedforward control algorithm, which makes zero-sequence current directly from the compensator's negative-sequence current, were proposed. The dc-side voltage of each phase can be controlled stably by these proposed algorithms in both steady-state and transient, so the compensator can have fast response to satisfy control performance under rapid changing load. These balancing controllers were implemented and verified via simulation and experiment.

A Load Control Scheme for Mobile Multimedia Networks (이동 멀티미디어 통신망을 위한 부하제어 방안)

  • Lee, Moon-Ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.01a
    • /
    • pp.275-277
    • /
    • 2016
  • 이동통신망에서 광대역 멀티미디어 서비스를 위한 무선 자원 확보를 위해서는 매크로셀/마이크로/피코셀(macro/micro/pico cell) 구조를 통해 무선 자원을 효과적으로 재사용할 필요가 있다. 이런 구조에서는 작은 셀 반경으로 인하여 빈번히 핸드오버가 발생하게 되고 이동성 또한 시간과 장소에 따라서 다양하게 나타난다. 본 논문에서는 차세대 이동통신망의 핸드오버 상황에서, 다양한 고속 멀티미디어 서비스에 일정한 수준의 QoS (Quality of Services)를 보장하기 위한 자원할당 시의 부하 제어 방안을 제안한다.

  • PDF

A Wireless Traffic Load-Balancing Algorithm based on Adaptive Bandwidth Reservation Scheme in Mobile Cellular Networks (셀룰러 망에서 적응적 대역폭 예약 기법을 이용한 무선 트래픽 부하 균형 알고리즘)

  • 정영석;우매리;김종근
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.21-24
    • /
    • 2001
  • For very large multimedia traffic to be supported successfully in wireless network environment, it is necessary to provide Quality-of-Service(QoS) guarantees between mobile hosts(clients). In order to guarantee the Qos, we have to keep the call blocking probability below target value during handoff session. However, the QoS negotiated between the client and the network may not be guaranteed due to lack of available channels for traffic in the new cell, since mobile clients should be able to continue their on-going sessions. In this paper we propose a efficient load-balancing algorithm based on the adaptive bandwidth reservation scheme for enlarging available channels in a cell. We design a new method to predict the mobility of clients using MPT(mobility profile table). This method is then used to reserve a part of bandwidths for handoff calls to its adjacent cells and this reserved bandwidth can be used for handoff call prior to new connection requests. If the number of free channels is also under a low threshold value, our scheme use a load-balancing algorithm with a adaptive bandwidth reservation. In order to evaluate the performance of our algorithm, we measure the metrics such as the blocking probability of new calls and dropping probability of handoff calls, and compare with other existing schemes.

  • PDF

3.7-V Single Battery-Cell High-Efficiency Power Management Circuit and System for UAV-Drones (무인항공기를 위한 3.7V 단일 배터리 셀 고효율 전력관리 회로시스템)

  • Kang, Woonsung;Hwang, Sunnam;Chang, Ho Jung;Kim, Hyun-Sik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.3
    • /
    • pp.63-69
    • /
    • 2017
  • This paper presents a highly efficient power management system for UAV-drones. For free from the battery cell-balancing issue, the proposed system allows the drone to utilize a single-cell Li-Po battery. To realize low-voltage input of 3.7V, the switch-mode step-up DC-DC converter is optimally designed with high power efficiency. The prototype DC-DC converter was implemented with an output voltage of 5V, which will be provided to digital parts of the drone. The power efficiency was measured to be max. 91.3% with low surface temperature. The measured line and load regulations were 0.02V/V and 0.15V/A, respectively. Thanks to the proposed power management system, the available time-to-fly of the drone is expected to be significantly extended in virtue of the enhanced power efficiency.

Load Balancing Scheme for Heterogeneous Cellular Networks Using e-ICIC (eICIC 가 적용된 이종 셀룰러 망을 위한 부하 분산 기법)

  • Hong, Myung-Hoon;Park, Seung-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.5
    • /
    • pp.280-292
    • /
    • 2014
  • Recently, heterogeneous networks consisting of small-cells on top of traditional macro-cellular network has attracted much attention, because traditional macro-cellular network is not suitable to support more demanding mobile data traffic due to its limitation of spatial reuse. However, due to the transmit power difference between macro- and small-cells, most users are associated with macro-cells rather than small-cells. To solve this problem, enhanced inter-cell interference coordination (eICIC) has been introduced. Particularly, in eICIC, the small-cell coverage is forcibly expanded to associate more users with small-cells. Then, to avoid cross-tier interference from macro-cells, these users are allowed to receive the data during almost blank subframe (ABS) in which macro-cells almost remain silent. However, this approach is not sufficient to balance the load between macro- and small-cells because it only expands the small-cell coverage. In this paper, we propose a load balance scheme improving proportional fairness for heterogeneous networks employing eICIC. In particular, the proposed scheme combines the greedy-based user association and the ABS rate determination in a recursive manner to perform the load balance.

A Dynamic Map Partition for Load Balancing of MMORPG based on Virtual Area Information (MMORPG에서의 부하 분산을 위한 가상 영역 정보 기반 동적 지역 분할)

  • Kim Beob-Kyun;An Dong-Un;Chung Seung-Jong
    • The KIPS Transactions:PartA
    • /
    • v.13A no.3 s.100
    • /
    • pp.223-230
    • /
    • 2006
  • A MMORPG(Massively Multiplayer Online Role-Playing Game) is an online role-playing game in which a large number of players can interact with each other in the same world at the same time. Most of them require significant hardware requirements(e.g., servers and bandwidth), and dedicated support staff. Despite the efforts of developers, users often cite overpopulation, lag, and poor support as problems of games. In this paper, a dynamic load balancing method for MMORPGS is proposed. It tries to adapt to dynamic change of population by using dynamic map-partition method with VML(Virtual Map Layer) which consists of fields, sector groups, sectors, and cells. From the experimental results, our approach achieves about $23^{\sim}67%$ lower loads for each field server. By the modification to Virtual Area Layer, we can easily manage problems that come from changes of map data, resources' status, and users' behavior pattern.

40kV Solid State Pulsed Power Supply for Environmental Applications (40kV 친환경 응용을 위한 반도체 기반 펄스 전원장치)

  • Song, Seung-Ho;Cho, Hyun-Bin;Park, Su-Mi;Lee, Seung-Hee;Jin, Hee-Sung;Ryoo, Hong-Je
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.45-47
    • /
    • 2018
  • This paper describes the 40kV solid state pulsed power supply for environmental applications. The output specifications of the pulsed power supply are 40kV, 300A, 3kHz, and average output power of 13kW. In order to generate a high voltage, a series stacking cell structure is used which is charged in parallel and discharged in series. Due to this structure, there is no dynamic voltage balancing problem as well as static voltage balancing problem for switches used in high voltage pulse power supplies. To verify this pulse power supply design, PSpice modeling was performed. Finally, experimental results with non-inductive resistive load and gas treatment reactor proved the reliability of the solid state pulsed power supply.

  • PDF

User Association and Base Station Sleep Management in Dense Heterogeneous Cellular Networks

  • Su, Gongchao;Chen, Bin;Lin, Xiaohui;Wang, Hui;Li, Lemin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2058-2074
    • /
    • 2017
  • Dense Heterogeneous Cellular Networks(HCNs) offer a promising approach to meet the target of 1000x increase in aggregate data rates in 5G wireless communication systems. However how to best utilize the available radio resources at densely deployed small cells remains an open problem as those small cells are typically unplanned. In this paper we focus on balancing loads across macro cells and small cells by offloading users to small cells, as well as dynamically switching off underutilized small cells. We propose a joint user association and base station(BS) sleep mangement(UA-BSM) scheme that proactively offloads users to a fraction of the densely deployed small cells. We propose a heuristic algorithm that iteratively solves the user association problem and puts BSs with low loads into sleep. An interference relation matrix(IRM) is constructed to help us identify the candidate BSs that can be put into sleep. User associations are then aggregated to selected small cells that remain active. Simulation results show that our proposed approach achieves load balancing across macro and small cells and reduces the number of active BSs. Numerical results show user signal to interference ratio(SINR) can be improved by small cell sleep control.

Further validation of the hybrid particle-mesh method for vortex shedding flow simulations

  • Lee, Seung-Jae;Lee, Jun-Hyeok;Suh, Jung-Chun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.6
    • /
    • pp.1034-1043
    • /
    • 2015
  • This is the continuation of a numerical study on vortex shedding from a blunt trailing-edge of a hydrofoil. In our previous work (Lee et al., 2015), numerical schemes for efficient computations were successfully implemented; i.e. multiple domains, the approximation of domain boundary conditions using cubic spline functions, and particle-based domain decomposition for better load balancing. In this study, numerical results through a hybrid particle-mesh method which adopts the Vortex-In-Cell (VIC) method and the Brinkman penalization model are further rigorously validated through comparison to experimental data at the Reynolds number of $2{\times}10^6$. The effects of changes in numerical parameters are also explored herein. We find that the present numerical method enables us to reasonably simulate vortex shedding phenomenon, as well as turbulent wakes of a hydrofoil.