• Title/Summary/Keyword: cell impedance

Search Result 530, Processing Time 0.024 seconds

Evaluation of the Corrosion Property on the Welded Zone of Cast Steel Piston Crown with Types of Electrode (용접재료 별 주강 피스톤 크라운 용접부위의 부식 특성에 대한 평가)

  • Moon, Kyung-Man;Kim, Yun-Hae;Lee, Myeong-Hoon;Baek, Tae-Sil;Kim, Jin-Gyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.356-362
    • /
    • 2014
  • Wear and corrosion of the engine parts surrounded with combustion chamber is more serious compared to the other parts of the engine because temperature of the exhaust gas in a combustion chamber is getting higher and higher with increasing of using the heavy oil of low quality. Therefore, an optimum repair weldment as well as an available choice of the base metal for these parts are very important to prolong their lifetime in a economical point of view. It reported that there was an experimental result for repair weldment on the forged steel which would be generally used with piston crown material, however, it is considered that there is no study for the repair weldment on the cast steel of piston crown material. In this study, four types of electrodes such as 1.25Cr-0.5Mo, 0.5Mo Inconel 625 and 718 were welded with SMAW and GTAW methods on the cast steel which would be generally used with piston crown material. And the corrosion properties of weld metal, heat affected zone and base metal were investigated using electrochemical methods such as measurement of corrosion potential, anodic polarization curves, cyclic voltammogram and impedance etc. in 35% $H_2SO_4$ solution. In the cases of Inconel 625, 718, the weld metals and base metals exhibited the best and worst corrosion resistance respectively, however, 1.25Cr-0.5Mo and 0.5Mo indicated that corrosion resistance of the base metal was better than the weld metal. And the weld metal welded with electrodes of Inconel 625 revealed the best corrosion resistance among the electrodes, and Inconel 718 followed the Inconel 625. Hardness relatively also indicated higher value in the weld metal compared to heat affected zone and base metal. In particular, Inconel 718 indicated the highest value of hardness compared to other electrodes in the heat affected zone.

Nitrided LATP Solid Electrolyte for Enhanced Chemical Stability in Alkaline Media (질화 처리된 LATP 고체전해질의 알칼라인 용액내에서의 내화학특성 개선 연구)

  • Seong, Ji Young;Lee, Jong-Won;Im, Won Bin;Kim, Sung-Soo;Jung, Kyu-Nam
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.2
    • /
    • pp.45-50
    • /
    • 2015
  • In the present work, to increase the chemical stability of the lithium-ion-conducting ceramic electrolyte ($Li_{1+x+y}Al_xTi_{2-x}Si_yP_{3-y}O_{12}$, LATP) in the strong alkaline solution, the surface of LATP was modified by the nitridation process. The surface and structural properties of nitride LATP solid electrolyte were characterized by X-ray diffraction, X-ray photoelectron spectrometer and scanning electron microscopy and ac-impedance spectroscopy, which were correlated to the chemical stability and electrochemical performance of LATP. The nitrided LATP immersed in the alkaline solution for 30 days exhibits the enhanced chemical stability than the pristine LATP. Moreover, a rechargeable hybrid Li-air battery constructed with the nitrided LATP solid electrolyte shows considerably reduced discharge-charge voltage gaps (enhanced the round-trip efficiency) in comparison to the cell constructed with pristine LATP, which indicate that the surface nitridation process can be the efficient way to improve the chemical stability of solid electrolyte in alkaline media.

Synthesis and Electrochemical Characteristics of Mesoporous Silicon/Carbon/CNF Composite Anode (메조기공 Silicon/Carbon/CNF 음극소재 제조 및 전기화학적 특성)

  • Park, Ji Yong;Jung, Min Zy;Lee, Jong Dae
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.543-548
    • /
    • 2015
  • Si/C/CNF composites as anode materials for lithium-ion batteries were examined to improve the capacity and cycle performance. Si/C/CNF composites were prepared by the fabrication process including the synthesis and magnesiothermic reduction of SBA-15 to obtain Si/MgO by ball milling and the carbonization of phenol resin with CNF and HCl etching. Prepared Si/C/CNF composites were then analysed by BET, XRD, FE-SEM and TGA. Among SBA-15 samples synthesized at reaction temperatures between 50 and $70^{\circ}C$, the SBA-15 at $60^{\circ}C$ showed the largest specific surface area. Also the electrochemical performances of Si/C/CNF composites as an anode electrode were investigated by constant current charge/discharge test, cyclic voltammetry and impedance tests in the electrolyte of LiPF6 dissolved in mixed organic solvents (EC : DMC : EMC = 1 : 1 : 1 vol%). The coin cell using Si/C/CNF composites (Si : CNF = 97 : 3 in weight) showed better capacity (1,947 mAh/g) than that of other composition coin cells. The capacity retention ratio decreased from 84% (Si : CNF = 97 : 3 in weight) to 77% (Si : CNF = 89 : 11 in weight). It was found that the Si/C/CNF composite electrode shows an improved cycling performance and electric conductivity.

Electrochemical Characteristics of Zn and Si Ion-doped HA Films on Ti-6Al-4V by PEO Treatment

  • Lim, Sang-Gyu;Hwang, In-Jo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.199-199
    • /
    • 2016
  • Commercially pure titanium (cp-Ti) and Ti alloys (typically Ti-6Al-4V) display excellent corrosion resistance and biocompatibility. Although the chemical composition and topography are considered important, the mechanical properties of the material and the loading conditions in the host have, conventionally. Ti and its alloys are not bioactive. Therefore, they do not chemically bond to the bone, whereas they physically bond with bone tissue. The electrochemical deposition process provides an effective surface for biocompatibility because large surface area can be served to cell proliferation. Electrochemical deposition method is an attractive technique for the deposition of hydroxyapatite (HAp). However, the adhesions of these coatings to the Ti surface needs to be improved for clinical used. Plasma electrolyte oxidation (PEO) enables control in the chemical com position, porous structure, and thickness of the $TiO_2$ layer on Ti surface. In addition, previous studies h ave concluded that the presence of $Ca^{+2}$ and ${PO_4}^{3-}$ ion coating on porous $TiO_2$ surface induced adhesion strength between HAp and Ti surface during electrochemical deposition. Silicon (Si) in particular has been found to be essential for normal bone and cartilage growth and development. Zinc (Zn) plays very important roles in bone formation and immune system regulation, and is also the most abundant trace element in bone. The objective of this work was to study electrochemical characteristcs of Zn and Si coating on Ti-6Al-4V by PEO treatment. The coating process involves two steps: 1) formation of porous $TiO_2$ on Ti-6Al-4V at high potential. A pulsed DC power supply was employed. 2) Electrochemical tests were carried out using potentiodynamic and AC impedance methoeds. The morphology, the chemical composition, and the micro-structure an alysis of the sample were examined using FE-SEM, EDS, and XRD. The enhancements of the HAp forming ability arise from $Si/Zn-TiO_2$ surface, which has formed the reduction of the Si/Zn ions. The promising results successfully demonstrate the immense potential of $Si/Zn-TiO_2$ coatings in dental and biomaterials applications.

  • PDF

Cathode materials advance in solid oxide fuel cells (고체산화물연료전지 공기극의 재료개발동향)

  • Son, Young-Mok;Cho, Mann;Nah, Do-Baek;Kil, Sang-Cheol;Kim, Sang-Woo
    • Journal of Energy Engineering
    • /
    • v.19 no.2
    • /
    • pp.73-80
    • /
    • 2010
  • A solid oxide fuel cells(SOFC) is a clean energy technology which directly converts chemical energy to electric energy. When the SOFC is used in cogeneration then the efficiency can reach higher than 80%. Also, it has flexibility in using various fuels like natural gases and bio gases, so it has an advantage over polymer electrolyte membrane fuel cells in terms of fuel selection. A typical cathode material of the SOFC in conjunction with yttria stabilized zirconia(YSZ) electrolyte is still Sr-doped $LaMnO_3$(LSM). Recently, application of mixed electronic and ionic conducting perovskites such as Sr-doped $LaCoO_3$(LSCo), $LaFeO_3$(LSF), and $LaFe_{0.8}Co_{0.2}O_3$(LSCF) has drawn much attention because these materials exhibit lower electrode impedance than LSM. However, chemical reaction occurs at the manufacturing temperature of the cathode when these materials directly contact with YSZ. In addition, thermal expansion coefficient(TEC) mismatch with YSZ is also a significant issue. It is important, therefore, to develop cathode materials with good chemical stability and matched TEC with the SOFC electrolyte, as well as with high electrochemical activity.

Electrochemical Performance on the H3BO3 Treated Soft Carbon modified from PFO as Anode Material (음극소재로 PFO에서 개질된 붕산처리 소프트 카본의 전기화학적 성능)

  • Lee, Ho Yong;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.746-752
    • /
    • 2016
  • In this study, soft carbon was prepared by carbonization of carbon precursor (pitch) obtained from PFO (pyrolysis fuel oil) heat treatment. Three carbon precursors prepared by the thermal reaction were 3903 (at $390^{\circ}C$ for 3 h), 4001 (at $400^{\circ}C$ for 1 h) and 4002 (at $400^{\circ}C$ for 2 h). After the prepared soft carbon was ground to a particle size of $25{\sim}35^{\circ}C$, the soft carbon was synthesised by the chemical treatment with boric acid ($H_3BO_3$). The prepared soft carbon were analysed by XRD, FE-SEM and XPS. Also, the electrochemical performances of soft carbon were investigated by constant current charge/discharge test, cyclic voltammetry and impedance tests in the electrolyte of $LiPF_6$ dissolved inorganic solvents (EC:DMC=1:1 vol%+VC 3 wt%). The coin cell using soft carbon of $25{\sim}35^{\circ}C$ with 3903 soft carbon ($H_3BO_3$/Pitch=3:100 in weight) has better initial capacity and efficiency (330 mAh/g, 82%) than those of other coin cells. Also, it was found that the retention rate capability of 2C/0.1C was 90% after 30 cycles.

Fabrication Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF)/Ce0.9Gd0.1O2−δ (GDC) and La0.6Ba0.4Co0.2Fe0.8O3−δ (LBCF)/Ce0.9Gd0.1O2−δ (GDC) Composite Cathodes for Intermediate Temperature Solid Oxide Fuel Cells (중저온 SOFC용 Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF)/Ce0.9Gd0.1O2−δ (GDC) 및 La0.6Ba0.4Co0.2Fe0.8O3−δ (LBCF)/Ce0.9Gd0.1O2−δ (GDC) 복합체 양극 제조)

  • Lee, Seung-Hun;Yoon, Song-Seol;Cha, Young-Chul;Lee, Jun;Hwang, Hae-Jin;Moon, Ji-Woong
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.740-746
    • /
    • 2007
  • The potential candidates for IT-SOFCs cathode materials, $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ (BSCF) and $La_{0.6}Ba_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ (LBCF) powders, were synthesized by a EDTA-citrate combined method from $Sr(NO_3)_2$, $Ba(NO_3)_2$, $La(NO_3)_3{\cdot}6H_2O$, $Co(NO_3)_2{\cdot}6H_2O$, $Fe(NO_3)_3{\cdot}9H_2O$, citric acid and $EDTA-NH_3$. The cathode performance of symmetrical electrochemical cells consisting of BSCF-GDC or LBCF-GDC composite electrodes and a GDC electrolyte was investigated using by AC impedance spectroscopy at the temperature range of 500 to $700^{\circ}C$. It was found that a single phase perovskite could be successfully synthesized when the precursor is heated at $850^{\circ}C$ for 2 h. Due to thermal expansion mismatch between BSCF and GDC, the composite cathodes with lower GDC content than 45 wt% were peeled off from the GDC electrolyte and their electrode polarization resistance was estimated to be high. The thermal expansion coefficient of BSCF-GDC composites was decreased with increasing the GDC content and the electrode peeling off did not occur in BSCF-45 and 55 wt% GDC composites. BSCF-45 wt% GDC composite electrode showed the lowest area specific resistances (ASR) of 0.15 and $0.04{\Omega}{\cdot}cm^2$ at 600 and $700^{\circ}C$, respectively. On the other hand, LBCF-GDC composite cathodes showed higher ASR than the BSCF-45 and 55 wt% GDC and their cathode performance were decreased with the GDC content.

Electrochemical Characteristics of PFO pitch Anode prepared by Chemical Activation for Lithium Ion Battery (리튬이온전지용 화학적 활성화로 제조된 석유계 피치 음극소재의 전기화학적 특성)

  • Hwang, Jin Ung;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.307-312
    • /
    • 2017
  • In this study, the electrochemical performance of surface modified carbon using the PFO (pyrolyzed fuel oil) was investigated by chemical activation with KOH and $K_2CO_3$. PFO was heat treated at $390{\sim}400^{\circ}C$ for 1~3h to prepared the pitch. Three carbon precursors (pitch) prepared by the thermal reaction were 3903 (at $390^{\circ}C$ for 3h), 4001(at $400^{\circ}C$ for 1h) and 4002 (at $400^{\circ}C$ for 2h). Also, the effect of chemical activation catalysts and mixing time on the development of porosity during carbonization was investigated. The prepared carbon was analyzed by BET and FE-SEM. It was shown that chemical activation with KOH could be successfully used to develop carbon with specific surface area ($3.12m^2/g$) and mean pore size (22 nm). The electrochemical characteristics of modified carbon as the anode were investigated by constant current charge/discharge, cyclic voltammetry and electrochemical impedance tests. The coin cell using pitch (4002) modified by KOH has better initial capacity (318 mAh/g) than that of other pitch coin cells. Also, this prepared carbon anode appeared a high initial efficiency of 80% and the retention rate capability of 2C/0.1 C was 92%. It is found that modified carbon anode showed improved cycling and rate capacity performance.

Design of a Small Area 12-bit 300MSPS CMOS D/A Converter for Display Systems (디스플레이 시스템을 위한 소면적 12-bit 300MSPS CMOS D/A 변환기의 설계)

  • Shin, Seung-Chul;Moon, Jun-Ho;Song, Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.4
    • /
    • pp.1-9
    • /
    • 2009
  • In this paper, a small area 12-bit 300MSPS CMOS Digital-to-Analog Converter(DAC) is proposed for display systems. The architecture of the DAC is based on a current steering 6+6 segmented type, which reduces non-linearity error and other secondary effects. In order to improve the linearity and glitch noise, an analog current cell using monitoring bias circuit is designed. For the purpose of reducing chip area and power dissipation, furthermore, a noble self-clocked switching logic is proposed. To verify the performance, it is fabricated with $0.13{\mu}m$ thick-gate 1-poly 6-metal N-well Samsung CMOS technology. The effective chip area is $0.26mm^2$ ($510{\mu}m{\times}510{\mu}m$) with 100mW power consumption. The measured INL (Integrated Non Linearity) and DNL (Differential Non Linearity) are within ${\pm}3LSB$ and ${\pm}1LSB$, respectively. The measured SFDR is about 70dB, when the input frequency is 15MHz at 300MHz clock frequency.

Study on Low-Temperature Solid Oxide Fuel Cells Using Y-Doped BaZrO3 (Y-doped BaZrO3을 이용한 저온형 박막 연료전지 연구)

  • Chang, Ik-Whang;Ji, Sang-Hoon;Paek, Jun-Yeol;Lee, Yoon-Ho;Park, Tae-Hyun;Cha, Suk-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.9
    • /
    • pp.931-935
    • /
    • 2012
  • In this study, we fabricate and investigate low-temperature solid oxide fuel cells with a ceramic substrate/porous metal/ceramic/porous metal structure. To realize low-temperature operation in solid oxide fuel cells, the membrane should be fabricated to have a thickness of the order of a few hundreds nanometers to minimize IR loss. Yttrium-doped barium zirconate (BYZ), a proton conductor, was used as the electrolyte. We deposited a 350-nm-thick Pt (anode) layer on a porous substrate by sputter deposition. We also deposited a 1-${\mu}m$-thick BYZ layer on the Pt anode using pulsed laser deposition (PLD). Finally, we deposited a 200-nm-thick Pt (cathode) layer on the BYZ electrolyte by sputter deposition. The open circuit voltage (OCV) is 0.806 V, and the maximum power density is 11.9 mW/$cm^2$ at $350^{\circ}C$. Even though a fully dense electrolyte is deposited via PLD, a cross-sectional transmission electron microscopy (TEM) image reveals many voids and defects.