DOI QR코드

DOI QR Code

중저온 SOFC용 Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF)/Ce0.9Gd0.1O2−δ (GDC) 및 La0.6Ba0.4Co0.2Fe0.8O3−δ (LBCF)/Ce0.9Gd0.1O2−δ (GDC) 복합체 양극 제조

Fabrication Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF)/Ce0.9Gd0.1O2−δ (GDC) and La0.6Ba0.4Co0.2Fe0.8O3−δ (LBCF)/Ce0.9Gd0.1O2−δ (GDC) Composite Cathodes for Intermediate Temperature Solid Oxide Fuel Cells

  • 이승훈 (인하대학교 신소재공학부) ;
  • 윤종설 (인하대학교 신소재공학부) ;
  • 차영철 (인하대학교 신소재공학부) ;
  • 이준 (인하대학교 신소재공학부) ;
  • 황해진 (인하대학교 신소재공학부) ;
  • 문지웅 (요업기술원 에너지응용소재팀)
  • Lee, Seung-Hun (School of Materials Science and Engineering, Inha University) ;
  • Yoon, Song-Seol (School of Materials Science and Engineering, Inha University) ;
  • Cha, Young-Chul (School of Materials Science and Engineering, Inha University) ;
  • Lee, Jun (School of Materials Science and Engineering, Inha University) ;
  • Hwang, Hae-Jin (School of Materials Science and Engineering, Inha University) ;
  • Moon, Ji-Woong (Korea Institute of Ceramic Enginerring and Technology, Energy & Applied Materials Laboratory)
  • 발행 : 2007.12.31

초록

The potential candidates for IT-SOFCs cathode materials, $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ (BSCF) and $La_{0.6}Ba_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ (LBCF) powders, were synthesized by a EDTA-citrate combined method from $Sr(NO_3)_2$, $Ba(NO_3)_2$, $La(NO_3)_3{\cdot}6H_2O$, $Co(NO_3)_2{\cdot}6H_2O$, $Fe(NO_3)_3{\cdot}9H_2O$, citric acid and $EDTA-NH_3$. The cathode performance of symmetrical electrochemical cells consisting of BSCF-GDC or LBCF-GDC composite electrodes and a GDC electrolyte was investigated using by AC impedance spectroscopy at the temperature range of 500 to $700^{\circ}C$. It was found that a single phase perovskite could be successfully synthesized when the precursor is heated at $850^{\circ}C$ for 2 h. Due to thermal expansion mismatch between BSCF and GDC, the composite cathodes with lower GDC content than 45 wt% were peeled off from the GDC electrolyte and their electrode polarization resistance was estimated to be high. The thermal expansion coefficient of BSCF-GDC composites was decreased with increasing the GDC content and the electrode peeling off did not occur in BSCF-45 and 55 wt% GDC composites. BSCF-45 wt% GDC composite electrode showed the lowest area specific resistances (ASR) of 0.15 and $0.04{\Omega}{\cdot}cm^2$ at 600 and $700^{\circ}C$, respectively. On the other hand, LBCF-GDC composite cathodes showed higher ASR than the BSCF-45 and 55 wt% GDC and their cathode performance were decreased with the GDC content.

키워드

참고문헌

  1. W. Winkler and J. Koeppen, 'Design and Operation of Interconnectors for Solid Oxide Fuel Cell Stacks,' J. Power Sources, 61 [1-2] 201-04 (1996) https://doi.org/10.1016/S0378-7753(96)02353-1
  2. T. Kadowaki, T. Shiomitsu, E. Matsuda, H. Nakagawa, H. Tsuneizumo, and T. Maruyama, 'Applicability of Heat Resisting Alloys to the Separator of Planar Type Solid Oxide Fuel Cell,' Solid State Ionics, 67 [1-2] 65-9 (1993) https://doi.org/10.1016/0167-2738(93)90310-Y
  3. R. T. Leah, N. P. Brandon, and P. Aguiar, 'Modelling of Cells, Stacks and Systems Based Around Metal-supported Planar IT-SOFC Cells with CGO Electrolytes Operating at 500-$600^{\circ}C$,' J. Power Sources, 145 [2] 336-52 (2005) https://doi.org/10.1016/j.jpowsour.2004.12.067
  4. J. W. Fergus, 'Sealant for Solid Oxide Fuel Cells,' J. Power Sources, 147 [1-2] 46-57 (2005) https://doi.org/10.1016/j.jpowsour.2005.05.002
  5. F. L. Lowrie and R. D. Rawlings, 'Room and High Temperature Failure Mechanisms in Solid Oxide Fuel Cell Electolytes,' J. Eur. Ceram. Soc., 20 [6] 751-60 (2000) https://doi.org/10.1016/S0955-2219(99)00080-1
  6. E. Maguire, B. Gharbage, F. M. B. Maques, and J. A. Labrincha, 'Cathode Materials for Intermediate Temperature SOFCs,' Solid State Ionics, 127 [3-4] 329-35 (2000) https://doi.org/10.1016/S0167-2738(99)00286-6
  7. V. Dusastre and J. A. Kilner, 'Optimisation of Composite Cathodes for Intermediate Temperature SOFC Applications,' Solid State Ionics, 126 [1-2] 163-74 (1999) https://doi.org/10.1016/S0167-2738(99)00108-3
  8. X. Li, Principles of Fuel Cells, pp. 477-506, Taylor & Francis Group, New york, 2006
  9. H. Wang, Y. Cong, and W. Yang, 'Oxygen Permeation Study in a Tubular ^Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ Oxygen Permeable Membrane,' J. Membrane Sci., 210 [2] 259-71 (2003) https://doi.org/10.1016/S0376-7388(02)00361-7
  10. Z. Shao, W. Yang, Y. Cong, H. Dong, J. Tong, and G. Xiong, 'Investigation of the Permeation Behavior and Stability of a $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ Oxygen Membrane,' J. Membrane Sci., 172 [1-2] 177-88 (2000) https://doi.org/10.1016/S0376-7388(00)00337-9
  11. Z. Shao, G. Xiong, H. Dong, W. Yang, and L. Lin, 'Synthesis, Oxygen Permeation Study and Membrane Performance of a $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ Oxygen-permeable Dense Ceramic Reactor for Partial Oxidation of Methane to Syngas,' Separation and Purification Technology, 25 [1-3] 97-116 (2001) https://doi.org/10.1016/S1383-5866(01)00095-8
  12. Z. Duan, M. Yang, A. Yan, Z. Hou, Y. Dong, Y. Chong, M. Cheng, and W. Yang, '$Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ as a Cathode for IT-SOFCs with GDC Interlayer,' J. Power Sources, 160 [1] 57-64 (2006) https://doi.org/10.1016/j.jpowsour.2006.01.092
  13. Z. Shao and S. Haile, 'A High-performance Cathode for the Next Generation of Solid-oxide Fuel Cells,' Nature, 43 170-73 (2004) https://doi.org/10.1038/nature02863
  14. M. Gdickemeier, K. Sasaki, L. J. Gauckler, and I. Riess, 'Perovskite Cathodes for Solid Oxide Fuel Cells Based on Ceria Electrolytes,' Solid State Ionics, 86-88 [2] 691-701 (1996) https://doi.org/10.1016/0167-2738(96)00149-X
  15. J.-W. Moon, Y. H. Lim, Y. K. Oh, M. J. Lee, B. H. Choi, and H. J. Hwang, 'Polarization Resistance of $(Ba_{0.5}Sr_{0.5})_{0.99}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ Air Electrode Synthesized by Glycine-nitrate Process (in Korean),' J. Kor. Ceram. Soc., 42 [12] 800-07 (2005) https://doi.org/10.4191/KCERS.2005.42.12.800
  16. S. Lee, Y. H. Lim, E. A Lee, H. J. Hwang, and J.-W. Moon, '$Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ (BSCF) and $La_{0.6}Ba_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ (LBCF) Cathodes Prepared by Combined Citrate-EDTA Method for IT-SOFCs,' J. Power Sources, 157 848-54 (2006) https://doi.org/10.1016/j.jpowsour.2005.12.028
  17. H. Hayashi, M. Kanoh, C. J. Quan, H. Inaba, S. Wang, M. Dokiya, and H. Tagawa, 'Thermal Expansion of Gd-doped Ceria and Reduced Ceria,' Solid State Ionics, 132 227-33 (2000) https://doi.org/10.1016/S0167-2738(00)00646-9
  18. Y. H. Lim, J. Lee, J. S. Yoon, C. E. Kim, and H. J. Hwang, 'Electrochemical Performance of $Ba_{0.5}Sr_{0.5}Co_xFe_{1-x}O_{3-{\delta}}$ (x =0.2- 0.8) Cathode on a ScSZ Electrolyte for Intermediate Temperature SOFCs,' J. Power Sources, 171 79-85 (2007) https://doi.org/10.1016/j.jpowsour.2007.05.050
  19. S. Li, W. Jin, N. Xu, and J. Shi, 'Oxygen Vacancy Concentration Variation, Diffusivity and Thermo-chemical Stability of $La_{0.2}Ba_{0.8}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ Membranes,' J. Mater. Sci., 35 4329-35 (2000) https://doi.org/10.1023/A:1004844604573
  20. P. Zeng, Z. Chen, W. Zhou, H. Gu, Z. Shao, and S. Liu, 'Re-evaluation of $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ Perovskite as Oxygen Semi-permeable Membrane,' J. Membrane Sci., 291 148-56 (2007) https://doi.org/10.1016/j.memsci.2007.01.003