• Title/Summary/Keyword: cell immobilization

Search Result 209, Processing Time 0.03 seconds

Studies on the Cell Immobilization of Alkalophilic Streptomyces sp. B-2 for the Glucose Isomerization (포도당 이성화를 위한 Alkalophilic Streptomyces sp. B-2의 균체 고정화에 관한 연구)

  • 이은숙
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.3
    • /
    • pp.319-322
    • /
    • 1998
  • The whole cell of alkalophilic Streptomyces sp. B-2 which produce glucose isomerase was immobilized by entrapment method for the effective production of high fructose syrup. The highest immobilized activity was achieved when the enzyme was bound to 2% $textsc{k}$-carrageenan. Immobilized glucose isomerase the pH optimum was about pH 7.5~8.5. Immobilization of alkalophilic Streptomyces sp. B-2 on 2% $textsc{k}$-carrageenan at 7$0^{\circ}C$ showed an increase in glucose isomerase activity. GI activity of immobilized cells was maximum Co2+ concentration 10-3M, Mg2+ concentration 10-3M.

  • PDF

Polyurethane을 이용한 Thiobacillus sp. IW의 고정화

  • Hwang, Eun-Sang;Im, Geun-Gil;Lee, Gwang-U;Gang, Chun-Hyeong;Ryu, Hwa-Won;Park, Don-Hui
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.536-539
    • /
    • 2000
  • A simple and effective method has been developed for the immobilization of the cell on polyurethane foam. Two types of commercially available polyurethane foam and Hydro-filt were tested. The ultimate purpose of the process is to produce low-cost materials for hydrogen sulfide removal which are being increasingly used for industrial application. Effect of several parameters were studied on the cell loading. These parameters were type, size, and amount of polyurethane foam. MC-70 was the best immobilization material of three type of carriers, and optical particle size was $5{\sim}8mm$ and amount of polyurethane foam was 8g/L.

  • PDF

Continuous Fermentationof L-Lysine by Immobilized Corynebacterium glutamicum (Corynebacterium glutamicum 고정화균체에 의한 L-라이신 연속발효)

  • 이인선;조정일
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.2
    • /
    • pp.322-327
    • /
    • 1994
  • For the improvement of L-lysine productivity, development of the continuous fermentation system by a bioreactor assembly was attempted. Primarily, optimal conditions on the whole cell immobilization of Corynebacterium glutamicum ATCC21514 were studied and 76.2% of immobilization ratio was obtained when the cells were entrapped with 4% k-carrageenan showing 4.0kg gel strength. A bioreactor system was set up using the immobilized cells was applied for the continuous production of L-lysine. The results obtained under the optimum conditions were compared with those of the batchwise fermentation. Experimental results obtained from 14 day continuous fermentation showed 36.7% of sugar conversion to L-lysine while the productivity of L-lysine was disclosed as 4.96mg/ml mg-dry cell weight /hr which is 2.5times and 4.1 times higher than those of the batchwise fermentation by the intact cells and by the immobilized cells, respectively.

  • PDF

The Production of Lincomycin by Repeated Batch Cultures of Immobilized Streptomyces lincolnensis (고정화된 Streptomyces lincolnensis의 반복 회분식 배양에 의한 린코마이신 생산)

  • Kim, Chang-Joon;Chun, Gie-Taek;Chang, Yong-Keun;Kim, Sung-Bae
    • KSBB Journal
    • /
    • v.21 no.5
    • /
    • pp.384-388
    • /
    • 2006
  • The production stability of high-yielding mutants of Streptomyces lincolnensis immobilized on celite beads was examined in repeated batch cultures. We also explored the feasibility of immobilization of vegetative mycelial cells on pre-wetted celite beads, which is practical method for cell immobilization. Repeated transfer of immobilized cells into fresh medium every 10 days increased productivity of immobilized cells and maximum concentration of lincomycin, 1007 $({\pm}256)$ mg/L, was obtained at the end of the ninth cycle. A 1.4-fold higher productivity was obtained in immobilized-cell culture than that obtained by suspended-cell culture. When pre-wetted beads were inoculated with vegetative mycelia and cultured a slightly higher amount of immobilized cells and lincomycin was obtained more than those obtained by culture of spores immobilized on dry beads. This result indicates that immobilization of mycelial cells on pre-wetted beads was readily available. This technique is simple and no additional facilities are required for cell immobilization.

Characterization of Peroxiredoxins in the Gray matter in the spinal cord after Acute Immobilization Stress (급성 부동 스트레스 후 척수 회색질에서 Peroxiredoxin I 및 III의 발현 변화)

  • Paek, Nam-Hyun;Kwak, Seung-Soo;Lee, Dong-Seok;Lee, Young-Ho
    • Journal of Trauma and Injury
    • /
    • v.19 no.2
    • /
    • pp.105-112
    • /
    • 2006
  • Purpose: Many stresses produce reactive oxygen species and bring about mechanism of antioxidant reaction. Cytokine and a neurotransmitter through the cell membrane, as well as signal transduction through the cell membrane, are used for various pathological condition of the brain, such as neurodegenerative disease. There are several antioxidant enzymes in cells (superoxcide dismutase, glutathion peroxidasae, peroxiredoxin catalase, etc.) Methods: This study used single- or double-label immunohistochemical techniques to analyze mouse spinal neuron cells expressing Prx I and Prx III after acute mobilization stress. Results: Prx I was observed in dendritic cell of the gray matter of the spinal cord, and Prx III was observed in the cytoplasm of the GM of the spinal cord. Conclusion: The results of this study will help to explain differences of expression in the distributions of the peroxiredoxin enzymes of the spinal cord.

Potential of Immobilized Whole-Cell Methylocella tundrae as a Biocatalyst for Methanol Production from Methane

  • Mardina, Primata;Li, Jinglin;Patel, Sanjay K.S.;Kim, In-Won;Lee, Jung-Kul;Selvaraj, Chandrabose
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1234-1241
    • /
    • 2016
  • Methanol is a versatile compound that can be biologically synthesized from methane (CH4) by methanotrophs using a low energy-consuming and environment-friendly process. Methylocella tundrae is a type II methanotroph that can utilize CH4 as a carbon and energy source. Methanol is produced in the first step of the metabolic pathway of methanotrophs and is further oxidized into formaldehyde. Several parameters must be optimized to achieve high methanol production. In this study, we optimized the production conditions and process parameters for methanol production. The optimum incubation time, substrate, pH, agitation rate, temperature, phosphate buffer and sodium formate concentration, and cell concentration were determined to be 24 h, 50% CH4, pH 7, 150 rpm, 30℃, 100 mM and 50 mM, and 18 mg/ml, respectively. The optimization of these parameters significantly improved methanol production from 0.66 to 5.18 mM. The use of alginate-encapsulated cells resulted in enhanced methanol production stability and reusability of cells after five cycles of reuse under batch culture conditions.

Production of tissue-type plasminogen activator from immobilized CHO cells introduced hypoxia response element

  • Bae, Geun-Won;Kim, Hong-Jin;Kim, Gi-Tae;Kim, Ik-Yeong
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.257-260
    • /
    • 2002
  • Dissolved oxygen level of cell culture media has a critical effect on cellular metabolism, which governs specific productivity of recombinant proteins and mammalian cell growth However, in the cores of cell aggregates or cell-immobilized beads, oxygen level frequently goes below a critical level. Mammalian cells have a number of genes induced in the lower level of oxygen, and the genes contain a common cis-acting element (-RCGTG-), hypoxia response element (HRE). By binding of hypoxia inducible factor-l (HIF-I) to the HRE, promoters of hypoxia inducible genes are activated, which is a survival mechanism. In this work, to develop a CHO cell capable of producing recombinant proteins in immobilization and high density cell culture efficiently, mammalian expression vectors containing human tissue-type plasminogen activator (t-PA) gene controlled by HRE were constructed and stably transfected into the CHO cells. In $Ba^{2+}$ -alginate immobilization culture, CHO/pCl/dhfr/2HRE-t-PA cells produced 2 folds higher recombinant t-PA activity than CHO/pCl/dhfrlt-PA cells without $CoCl_2$ treatment. Furthermore, in repeated fed batch culture, productivity of t-PA in immobilized CHO/pCI/dhfr/2HRE-t-PA cells was 121 ng/ml/day, total production of 0.968 mg/day at 11 days culture while CHO/pCIIdhfrlt-PA cells was 22.8 ng/ml/day. All these results indicate that HRE is very useful for the enhancement of protein productivity in mammalian cell cultures.

  • PDF

Enzyme Immobilized Reactor Design for Ammonia Removal from Waste Water

  • Song, Ju-Yeong;Chung, Soo-Bae
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.2 no.2
    • /
    • pp.77-81
    • /
    • 1997
  • Removal of nitrogen compound from waste water is essential and often accomplished by biological process. To prevent washout and to develop an efficient bioreactor, immobilization of sutibal microorganisms could be sensible approach. Strains and permeabilized cell encapsulated in cellulose nitrate microcapsules and immobilized on polystyrene films were prepared by the method described in the previous study. In the wastewater treatment system, nitrification of ammonia component is generally known as rate controlling step. To enhance the rate of nitrification, firstly nitrifying strains Nitrosomonas europaea(IFO14298), are permeabilized chemically, and immobilized on polystyrene films and secondly oxidation rates of strain system and permeabilized strain system are compared in the same condition. with 30 minute permeabilized cells, it took about 25 hours to oxidize 70% of ammonia in the solution, while it took about 40 hours to treat same amount of ammonia with untreated cells. All the immobilization procedures did not harm to the enzyme activity and no mass transfer resistance through the capsule well was shown. In the durability test of immobilized system, the system showed considerable activity for the repeated operation for 90 days. With these results, the system developed in this study showed the possibility to be used in the actual waste water treatment system.

  • PDF

Immobilization of Photobacterium Phosphoreum for Monitoring of Toxic Substances

  • Uck-Han Chun;Jun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.2 no.2
    • /
    • pp.141-146
    • /
    • 1997
  • A new sensing system based on the immobilization of luminescent batcteria, Photobacterium phosphoreum, was proposed for continuous real-time monitoring of polluants. The response curves demonstrate that Photobacterium phosphoreum immobilized on the strontium alginate was very sensitive to seven reference chemicals used. The significant inhibitory concentrations for bioluminescence emission were 5 ppm for Pb(NO3)2, NiCl2, CdCl2, 50 ppm for NaAsO2, 0.1ppm for HgCl2, 0.5ppm for pentachlorophenol and less than 5ppm for SDS, respectively. The alginate mixed-cells (AMC) retained their luminescence during experimental period (29 days) under storage condition of -8$0^{\circ}C$. The variables affecting performance of continuous flow through monitoring (CFTM) were optimized in order to ensure stability and efficiency. The flow through cell with strontium-alginate immobilized luminescent bacteria was tested with salicylate and 4-nitrophenol and a rapid response of luminescence was recorded by time drive mode in bioluminescence spectrometer after exposure to both toxicants.

  • PDF

Immobilization of Glucose Oxidase using Branched Polyethyleneimines of Various Molecular Weights for Glucose Based Biofuel Cell (글루코스 기반 바이오연료전지를 위한 다양한 분자량의 폴리에틸렌이민을 이용한 글루코스 산화효소 고정화)

  • Ahn, Yeonjoo;Chung, Yongjin;Kwon, Yongchai
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.693-697
    • /
    • 2016
  • In this study, we fabricated the catalysts for enzymatic biofuel cell anode with carbon nanotube (CNT), glucose oxidase (GOx) and various molecular weights branched poly(ethyleneimine)(bPEI) and terephthalaldehyde (TPA) as cross-linker. In case of GOx/bPEI/CNT using only physical entrapments for immobilization, the molecular weights of bPEI didn't affect to electrochemical performances and long term stability. but that of the catalysts cross linked via TPA (TPA[GOx/bPEI/CNT]) improved and the mass transfer of glucose to FAD was interrupted as increasing of the bPEI's molecular weights. Furthermore, it was confirmed that the optimum molecular weight of PEI for TPA [GOx/bPEI/CNT]) structure is 750k that showed marvelous high performance (maximum power density of $0.995mW{\cdot}cm^{-2}$).