The Production of Lincomycin by Repeated Batch Cultures of Immobilized Streptomyces lincolnensis

고정화된 Streptomyces lincolnensis의 반복 회분식 배양에 의한 린코마이신 생산

  • Kim, Chang-Joon (Department of Chemical & Biological Engineering and ERI, Gyeongsang National University) ;
  • Chun, Gie-Taek (Department of Molecular Bioscience, Kangwon National University) ;
  • Chang, Yong-Keun (Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Sung-Bae (Department of Chemical & Biological Engineering and ERI, Gyeongsang National University)
  • 김창준 (경상대학교 생명화학공학과 및 공학연구원) ;
  • 전계택 (강원대학교 분자생명과학과) ;
  • 장용근 (한국과학기술원 생명화학공학과) ;
  • 김성배 (경상대학교 생명화학공학과 및 공학연구원)
  • Published : 2006.10.30

Abstract

The production stability of high-yielding mutants of Streptomyces lincolnensis immobilized on celite beads was examined in repeated batch cultures. We also explored the feasibility of immobilization of vegetative mycelial cells on pre-wetted celite beads, which is practical method for cell immobilization. Repeated transfer of immobilized cells into fresh medium every 10 days increased productivity of immobilized cells and maximum concentration of lincomycin, 1007 $({\pm}256)$ mg/L, was obtained at the end of the ninth cycle. A 1.4-fold higher productivity was obtained in immobilized-cell culture than that obtained by suspended-cell culture. When pre-wetted beads were inoculated with vegetative mycelia and cultured a slightly higher amount of immobilized cells and lincomycin was obtained more than those obtained by culture of spores immobilized on dry beads. This result indicates that immobilization of mycelial cells on pre-wetted beads was readily available. This technique is simple and no additional facilities are required for cell immobilization.

본 연구에서는 고정화 방선균을 이용한 이차대사산물생산 공정 개발에 있어서 고려해야 할 중요한 사항인, 고정화세포의 반복사용 가능성을 조사하였다. 또한 축축한 담체에 균사체 형태의 생산균주의 고정화가능성에 대하여 알아보았다. 셀라이트 담체에 고정화된 고생산성 Streptomyces lincolnensis 돌연변이주를 이용한 반복회분식 배양에서, 회분수가 증가함에 따라 고정화세포의 린코마이신 생산성이 증가하였고 9번째 회분에서는 1007 $({\pm}256)$ mg/L의 린코마이신이 얻어졌다. 10번의 반복회분동안 고정화세포에 의해 얻어진 린코마이신 총양을 기준으로 계산된 고정화세포 배양의 생산성은 현탁회분식 배양에 비해 1.4배 높았다. 축축한 담체와 배지가 포함된 플라스크에 균사체 형태의 생산균주를 접종하고 배양 후 생성된 고정화세포 농도와 린코마이신 양은 건조한 담체에 포자상태의 생산균주를 고정화한 후 배양하여 얻어진 것에 비하여 다소 높음이 관찰되었다. 이는 균사체 형태의 생산균주가 축축한 담체에 쉽게 고정화되는 것을 의미한다. 실제 생산규모를 고려할 때, 본 연구팀에서 개발한 방선균 고정화방법은 담체 멸균 및 세포고정화 단계에서 추가적인 설비가 필요 없으며, 이는 고정화단계에서 숙련된 기술과 추가의 설비를 요하는 다른 방법들에 비하여 실용적이며 경쟁력 있는 생물 공정이라고 사료된다.

Keywords

References

  1. Demain, A. L. (1999), Pharmaceutically active secondary metabolites of microorganisms, Appl. Microbiol. Biotechnol. 52, 455-463 https://doi.org/10.1007/s002530051546
  2. Park, Y. S., Ohta, N., and M. Okabe (1994), Neomycin production by partial immobilization Streptomyces fradiae on cellulose beads in an air-lift bioreactor, J. Ferm. Bioeng. 78, 265-268 https://doi.org/10.1016/0922-338X(94)90303-4
  3. Sara, M., Casas, C., and R. Godia (1997), Continuous production of a hybrid antibiotic by Streptomyces lividans TK21 pellets in a three-phase fluidized-bed bioreactor, Biotechnol. Bioeng. 53, 601-610 https://doi.org/10.1002/(SICI)1097-0290(19970320)53:6<601::AID-BIT8>3.0.CO;2-Q
  4. Ozergin-Ulgen, K. and F. Mavituna (1994), Comparison of the activity of immobilised and freely suspended Streptomyces coelicolor A3(2), Appl. Microbiol. Biotechnol. 41, 197-202 https://doi.org/10.1007/BF00186959
  5. Arcuri, E. J., Slaff, G., and R. Greasham (1986), Continuous production of thienamycin in immobilized cell systems, Biotechnol. Bioeng. 28, 842-849 https://doi.org/10.1002/bit.260280611
  6. Cruz, A. J. G., Pan, T., Giordano, R. C., Araujo, M. L. G. C., and C. O. Hokka (2004), Cephalosporin C production by immobilized Cephalosporium acremonium cells in a repeated batch tower bioreactor, Biotechnol. Bioeng. 85, 96-102 https://doi.org/10.1002/bit.10877
  7. Kim, C. J., Chang, Y. K., Chun, G.-T., Jeong, Y.-H., and S. J. Lee (2001), Continuous culture of immobilized Streptomyces cells for kasugamycin production, Biotechnol. Prog. 17, 453-461 https://doi.org/10.1021/bp010020k
  8. Gbewonyo, K. and D. I. C. Wang (1983), Confining mycelial growth to porous microbeads: a novel technique to alter the morphology of non-newtonian mycelial cultures, Biotechnol. Bioeng. 25, 967-893 https://doi.org/10.1002/bit.260250407
  9. Jones, A., Wood, D. N., Razniewska, T., Gaucher, G. M., and L. A. Behie (1986), Continuous production of penicillin-G by Penicillium chrysogenum cells immobilized on celite biocatalyst support particles, Can. J. Chem. Eng. 64, 547-552 https://doi.org/10.1002/cjce.5450640404
  10. Baker, E. E., Prevoznak, R. J., Drew, S. W., and B. C. Buckland (1982), Thienamycin production by Streptomyces cattleya cells immobilized in celite beads, Dev. Ind. Microbiol. 24, 467-474
  11. Spizek, J. and T. Reznaka (2004), Lincomycin, cultivation of producing strains and biosynthesis, Appl. Microbiol. Biotechnol. 63, 510-519 https://doi.org/10.1007/s00253-003-1431-3
  12. Lee, B. J. (2000), Establishment of screening procedure for high yielding mutant of lincomycin and dissolved oxygen controlled fermentation, M. S. Thesis, Division of Life Science, Kangwon National University, Chunchon
  13. El-Enshasy, H. A., Farid, M. A., and A. I. El-Diwany (1996), Oxytetracycline production by free and immobilized cells of Streptomyces rimosus in batch and repeated batch cultures, In Immobilized Cells: Basic and Applications, R. H. Wijffels, R. M. Buitelaar, C. Bucke, and J. Tramper Eds: Proc. Internationl Symposium Organized Under Auspices of The Working Party on Applied Biocatalysis of the European Federation of Biotechnology, Noordwijkerhout, The Netherlands, pp437-443
  14. Keshavarz, T., Walker, E., Eglin, R., Lilley, G., Holt, G., Bull, A. T., and M. D. Lilly (1989), Immobilization of Penicillium chrysogenum: spore growth on celite. Appl. Microbiol. Biotechnol. 30, 487-491