• Title/Summary/Keyword: cell immobilization

Search Result 209, Processing Time 0.02 seconds

Photosynthetic Activity, and Lipid and Hydrocarbon Production by Alginate-Immobilized Cells of Botryococcus in Relation to Growth Phase

  • Yashverry, Singh
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.687-691
    • /
    • 2003
  • Whole-cell immobilization of the hydrocarbon rich microalgae, Botryococcus braunii and B. protuberans, in alginate beads under air-lift batch cultures resulted in a significant increase in chlorophyll, carotenoid, dry weight, and 1ipid contents at stationary and resting growth phases, as compared to free cells. Photosynthetic activity in both the species, of Botryococcus was enhanced, relative to free cells, at any growth phase of cultures. Immobilization exerted a protective influence on ageing of the cultures as reflected by higher chlorophyll and dry weight contents. Entrapment also stabilized the chlorophyll and carotenoid contents even at stationary and resting phases as compared to free cells in both the species.

Long-term Repeated-Batch Operation of Immobilized Escherichia coli Cells to Synthesize Galactooligosaccharide

  • Lee, Sang-Eun;Yeon, Ji-Hyeon;Jung, Kyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.11
    • /
    • pp.1486-1493
    • /
    • 2012
  • In this study, we investigated whether galactooligosaccharide (GOS) can be stably and steadily synthesized using immobilized ${\beta}$-galactosidase (${\beta}$-gal) inclusion body (IB)-containing E. coli cells during long-term repeated-batch operation. To improve the operational stability of this enzyme reactor system, immobilized E. coli cells were crosslinked with glutaraldehyde (GA) after immobilization of the E. coli. When we treated with 2% GA for E. coli crosslinking, GOS production continued to an elapsed time of 576 h, in which seven batch runs were operated consecutively. GOS production ranged from 51.6 to 78.5 g/l ($71.2{\pm}10.5$ g/l, n = 7) during those batch operations. In contrast, when we crosslinked E. coli with 4% GA, GOS production ranged from 31.5 to 64.0 g/l ($52.3{\pm}10.8$, n = 4), and only four consecutive batch runs were operated. Although we did not use an industrial ${\beta}$-gal for GOS production, in which a thermophile is used routinely, this represents the longest operation time for GOS production using E. coli ${\beta}$-gal. Improved stability and durability of the cell immobilization system were achieved using the crosslinking protocol. This strategy could be directly applied to other microbial enzyme reactor systems using cell immobilization to extend the operation time and/or improve the reactor system stability.

Impact of Solvent pH on Direct Immobilization of Lysosome-Related Cell Organelle Extracts on TiO2 for Melanin Treatment

  • Bang, Seung Hyuck;Kim, Pil;Oh, Suk-Jung;Kim, Yang-Hoon;Min, Jiho
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.718-722
    • /
    • 2015
  • Techniques for immobilizing effective enzymes on nanoparticles for stabilization of the activity of free enzymes have been developing as a pharmaceutical field. In this study, we examined the effect of three different pH conditions of phosphate buffer, as a dissolving solvent for lysosomal enzymes, on the direct immobilization of lysosomal enzymes extracted from Hen's egg white and Saccharomyces cerevisiae. Titanium(IV) oxide (TiO2) nanoparticles, which are extensively used in many research fields, were used in this study. The lysosomal enzymes immobilized on TiO2 under each pH condition were evaluated to maintain the specific activity of lysosomal enzymes, so that we can determine the degree of melanin treatment in lysosomal enzymes immobilized on TiO2. We found that the immobilization efficiency and melanin treatment activity in both lysosomal enzymes extracted from Hen's egg white and S. cerevisiae were the highest in an acidic condition of phosphate buffer (pH 4). However, the immobilization efficiency and melanin treatment activity were inversely proportional to the increase in pH under alkaline conditions. In addition, enhanced immobilization efficiency was shown in TiO2 pretreated with a divalent, positively charged ion, Ca2+, and the melanin treatment activity of immobilized lysosomal enzymes on TiO2 pretreated with Ca2+ was also increased. Therefore, this result suggests that the immobilization efficiency and melanin treatment activity of lysosomal enzymes can be enhanced according to the pH conditions of the dissolving solvent.

Characterization of ATPase Activity of Free and Immobilized Chromatophore Membrane Vesicles of Rhodobacter sphaeroides

  • Kim, Hyeonjun;Tong, Xiaomeng;Choi, Sungyoung;Lee, Jeong K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.12
    • /
    • pp.2173-2179
    • /
    • 2017
  • The intracytoplasmic membrane of Rhodobacter sphaeroides readily vesiculates when cells are lysed. The resulting chromatophore membrane vesicle (CMV) contains the photosynthetic machineries to synthesize ATP by ATPase. The light-dependent ATPase activity of CMV was lowered in the presence of $O_2$, but the activity increased to the level observed under anaerobic condition when the reaction mixture was supplemented with ascorbic acid (${\geq}0.5mM$). Cell lysis in the presence of biotinyl cap phospholipid (bcp) resulted in the incorporation of bcp into the membrane to form biotinylated CMV (bCMV), which binds to streptavidin resin at a ratio of approximately $24{\mu}g$ bacteriochlorophyll a/ml resin. The ATPase activity of CMV was not affected by biotinylation, but approximately 30% of the activity was lost by immobilization to resin. Interestingly, the remaining 70% of ATPase activity stayed constant during 7-day storage at $4^{\circ}C$. On the contrary, the ATPase activity of bCMV without immobilization gradually decreased to approximately 40% of the initial level in the same comparison. Thus, the ATPase activity of CMV is sustainable after immobilization, and the immobilized bCMV can be used repeatedly as an ATP generator.

Transient Increase of Lipocortin 1 in Nuclei of the Hippocampal Pyramidal Neurons in Rats Induced by Immobilization Stress

  • Park, Hyoung-Sup;Jang, Yeon-Jin;Kim, Dong-Hou;Lee, Su-Ok;Na, Doe-Sun
    • BMB Reports
    • /
    • v.31 no.2
    • /
    • pp.117-122
    • /
    • 1998
  • Changes of lipocortin 1 (LC1) in the brain induced by immobilization stress were investigated in rats. Rats were immobilized for 0,1,2,3,4, and 5 h, and the brain slices were immunostained with anti-human LC1 antibodl (anti-LC1). Immunoreactivity of LCI (iLC1) was most prominent in neuronal cell bodies and processes of hippocampal CA regions and dentate gyrus. At rest without stress, most of the LC1 in the neuron located in the cytoplasm with the nuclei exhibiting relatively scarce immunoreactivity. Immobilization stress changed this intracellular distribution of LC1 by increasing nuclear LC1. The change was apparent in 1 h and reached the peak by 3 h. However, by 5 h of immobilization, the distribution pattern returned to that of the resting state. This transient nuclear translocation of LC1 was most prominent in $CA_1$ pyramidal neurons, and was not observed in areas other than the hippocampus. Adrenalectomy abolished this transient translocation of LC1. The roles of hippocampal LC1 as a mediator of glucocorticoid feedback signal and/or as an intracellar stress signaling protein could be suggested.

  • PDF

Effects of Kwibi-tang on Serum Levels of Hormone and the Non-Specific Immune Response after Immobilization Stress in Mice (귀비탕이 Stress 부하 후 혈중 호르몬 및 비특이적 면역반응에 미치는 영향)

  • Eun Jae Soon;Song Jung Mo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.172-178
    • /
    • 2004
  • To investigated the effects of Kwibi-tang water extract (KBT) on the non-specific immune response in C57BL/6 mice stressed by immobilization, we evaluated the changes in the contents of serum histamine and corticosterone and the phagocytic activity of macrophages. The level of serum histamine and corticosterone was determined with spectrofluorometer. The cell viability was determined by a MTT assay method. The subpolpulation of lymphocytes was determined by a flow cytometry. The phagocytic activity was determined with luminometer. KBT decreased the serum level of histamine and corticosterone increased by immobilization stress. Also, KBT enhanced the phagocytic activity and decreased the level of nitric oxde in murine peritoneal macrophages decreased by immobilization stress. These results indicate that KBT may be useful for the prevention and treatment of stress via suppression of serum histamine and corticosterone level and enhancement of the non-specific immune response.

Selection of Immobilization Material for Stabilization of Bioluminescence from Photobacterium phosphoreum (Bioluminescence 안정성을 위한 Photobacterium phosphoreum의 고정화 물질에 관한 연구)

  • Lee, Eun-Su;Kim, Hyeon-Suk;Jeon, Eok-Han
    • KSBB Journal
    • /
    • v.14 no.4
    • /
    • pp.403-407
    • /
    • 1999
  • Various materials including sodium alginate, k-carragreenan, collagen and polyacrylamide were studied in order to maintain stability of bioluminescence of P. phosphoreum for the purpose of continuos monitoring of toxic subtances. Collagen and polycryamide were shown to be inadequate for immobilization of p. phosphoreum since the bioluminescence decreased when cells were mixed with such materials. In case of k-carrageenan, the bioluminescence was stable when compared with collagen and polyacryamide. However, the k-carrageenan was not suitable for immobilization of p. phosphoreum as cells could not be mixed with the material properly in temperature at which gel formation already occurred. P . phosphoreum must be treated at low temperature below that of gel formation since these are psychrophilic luminescent bacterial. When cells were immobilized on sodium alginate, the bioluminescence was stably maintained for 20 minutes.

  • PDF

Ethanol Production by a New Method of Alginate-Immobilization (새로운 Alginate 고정화 방법에 의한 에탄올 생산)

  • Kim, Eun-Young;Kim, Seung-Wook;Kim, Keun
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.4
    • /
    • pp.373-380
    • /
    • 1993
  • When the cells of yeast K35 were immobilized in Ca-alginate gel, cell concentration and viability decreased as alginate concentration increased. Considering the results, 2% (w/v) Ca-alginate concentration would be suitable. Among various concentrations of additives and cross-lin-king agent, the addition of 1.67% (w/v) of bentonite together with 0.33% (v/v) of glutaraldehyde (ABG bead) resulted in the highest ethanol production of 1.8%(w/v), using YPD medium containing 2% glucose. ABG bead seemed to be more resistant to phosphate ion than Ca-alginate bead. 0.33%(w/v) of phosphate was a proper concentration for the ethanol production by ABG bead. Scanning electron microscopic observation depicted that the immobilized cells on the bead surface were coated by alginate gel and that the cells in the internal bead were cross-linked with alginate matrix. When repeated-batch culture was performed with ABG bead for 40 days in a packed-bed reactor, ethanol concentration of about 90~110 g/l-gel was maintained. Cell viability was maintained around 70%, and outgrowing cell concentration was below 6.3% of total cell concentration. Consequently, the results showed that ABG head was a potential carrier for continuous production of ethanol compared to conventional Ca-alginate bead.

  • PDF

Fabrication of Microbe-Attached SWNT Film for Biosensor Applications and Organophosphorus Compounds Detection (바이오센서 적용을 위한 미생물이 고정된 부양형 탄소나노튜브 필름 제작과 유기인 화합물 검출)

  • Kim, Intae;An, Taechang;Kim, Chang Sup;Cha, Hyung Joon;Kim, Jin Ho;Lim, Soo Taek;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.35-41
    • /
    • 2014
  • Microbes have been used extensively in various fields of researches and industries but has not been used widely for microfluidic biosensor applications because it is difficult to immobilize properly to a small space. Therefore, we developed a microbial immobilization method for microfluidic devices using single-walled nanotubes and dielectrophoretic force. Single-walled nanotubes and Escherichia coli were aligned between two cantilever electrodes by a positive dielectrophoretic force resulting in a film of single-walled nanotubes with attached Escherichia coli. The optimal condition of film formation without a cell lysis was investigated. Diameter of single-walled nanotubes and electric field (intensity and duration of application) had an effect on the cell viability. On the other hand, the cell concentration of the suspension did not affect the cell viability. Paraoxon was detected using single-walled nanotubes film with attached Escherichia coli that expressed organophosphorus hydrolase. This film which is suspended from the substrate showed faster response time than sensors that are not suspended from the substrate.

Shear Effects on Production of Lignin Peroxidase by Phanerochaete chrysosporium

  • Sang, Byeong-In;Kim, Yong-Hwan;Yoo, Young-Je
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.1 no.1
    • /
    • pp.26-31
    • /
    • 1996
  • Since biosynthesis of lignin peroxidase from Phanerochaete chrysosporium was known to be sensitive to shear, it is interesting to understand the effects of the shear sensitivity for the overproduction of lignin peroxidase. In stirred-tank fermentor, the shear-sensitivity in lignin peroxidase biosynthesis was quantified by using Kolmogorov length scale. It was found that agitation at 80$\mu$m Kolmogorov length scale is advantageous for the production of lignin peroxidase from P. chrysosporium. To overcome the shear sensitivity in lignin peroxidase biosynthesis caused by the agitation,P. chrysosporium was immobilized on various solid carriers. The nylon-immobilized P. chrysosporium was chosen in the present study as a way to overcome the shear sensitivity at the ranges of above 50$\mu$m Kolmogorov length scale. The adhesion force between immobilized cell and carrier can be predicted by thermodynamic approach and used as a criteria to select an adequate carrier materials for immobilization.

  • PDF