Effects of Kwibi-tang on Serum Levels of Hormone and the Non-Specific Immune Response after Immobilization Stress in Mice

귀비탕이 Stress 부하 후 혈중 호르몬 및 비특이적 면역반응에 미치는 영향

  • Published : 2004.02.01

Abstract

To investigated the effects of Kwibi-tang water extract (KBT) on the non-specific immune response in C57BL/6 mice stressed by immobilization, we evaluated the changes in the contents of serum histamine and corticosterone and the phagocytic activity of macrophages. The level of serum histamine and corticosterone was determined with spectrofluorometer. The cell viability was determined by a MTT assay method. The subpolpulation of lymphocytes was determined by a flow cytometry. The phagocytic activity was determined with luminometer. KBT decreased the serum level of histamine and corticosterone increased by immobilization stress. Also, KBT enhanced the phagocytic activity and decreased the level of nitric oxde in murine peritoneal macrophages decreased by immobilization stress. These results indicate that KBT may be useful for the prevention and treatment of stress via suppression of serum histamine and corticosterone level and enhancement of the non-specific immune response.

Keywords

References

  1. Neuroendocrinology Catecholamines, adrenal hormones, and stress Kopin, I.J.;Krieger, D.T.;Hugjes, J.C.(Eds.)
  2. Neuroendocrinology Beta-lipotropin and endorphin: Implications of current knowledhe Guillemin, R.G.;Krieger, D.T.;Hugjes, J.C.(Eds.)
  3. Neuroendocrinology v.36 no.6 Central H1- and H2-histaminergic stimulation of pituitary-adrenocortical response under stress in rats Bugajski, J.;Gadek, A. https://doi.org/10.1159/000123493
  4. Nature v.302 The vasopressin receptor antagonist dPTyr (Me) AVP does not prevent stress-induced ACTH and corticosterone release Mormede, P. https://doi.org/10.1038/302345a0
  5. Nature v.305 Modulation of stress-induced ACTH release by corticotropin-releasing factor, catecholamines and vasopressin Rivier, C.;Vale, W. https://doi.org/10.1038/305325a0
  6. Neuroendocrinology v.31 no.2 Effect of serotonin-releasing drugs on serum corticosterone concentration in rats Fuller, R.W.;Sonddy, H.D. https://doi.org/10.1159/000123057
  7. Proc. Natl. Acad. Sci. USA. v.82 no.4 Evidence for a role of endogenous corticotropin-releasing factor in cold, ether, immobilization, and traumatic stress Nakane, T.;Audhya, T.;Kanie, N.;Hollander, C.S. https://doi.org/10.1073/pnas.82.4.1247
  8. Endocrinology v.109 no.1 Adrenal sensitivity to adrenocorticotropin varies diurnally Kaneko, M.;Kancko, K.;Shinsako, J.;Dallman, M.F. https://doi.org/10.1210/endo-109-1-70
  9. Psychoneuroimmunology Ader, R.
  10. Life Sciences v.44 no.26 Stress and immunity: an integrated view of prelationships between the brain and the immune system Danzer, R.;Kelley, K.W. https://doi.org/10.1016/0024-3205(89)90345-7
  11. 方藥合編解說 申載鏞
  12. Korean Journal Oriental Physiology & Pathology v.17 no.5 Effects of Kwibi-tang on the specific immune response after immobilzation stress in C57BL/6 mice Lee, T.Y.;Han, M.S.;Lee, D.H.;Ko, D.W.;Oh, C.H.;Song, J.M.;Eun, J.S.
  13. In methods in Enzymology Endo, Y.
  14. J. Biol. Chem. v.231 Zenker, N.;Bernstein, D.E.
  15. J. Immunol. Methods v.174 Chemiluminenscence and nitrite determinations by the MALU macrophage cell line Boudard, F.;Vallot, N.;Cabaner, C.;Bastide, M. https://doi.org/10.1016/0022-1759(94)90030-2
  16. J. Immunol. Methods v.112 no.163 Measurement of phagocyte chemiluminenscence in a microtiter plate format Blair, A.L.;Cree, I.A.;Beck, J.S.;Hating, M.J.G.
  17. J. Immuno. Methods v.162 A rapid and simple microfluorometric phagocytosis assay Chok, P.W.;Choon, S.P.;Benjamin, H.S. https://doi.org/10.1016/0022-1759(93)90400-2
  18. Infect. Immunity v.59 no.9 Killing of Plasmodium falciparum in vitro by nitric oxide derivatives Rocket, K. A.;Awburn, M. M.;Cowden, W. B.;Clark, I. A.
  19. AMP. J. Leucocyte Biol. v.41 Zymosan-stimulated production of phosphatidic acid by macrophages: relationship to release of superoxide anion and inhibition by agents that increase intracellular cyclic Channon, J. Y.;Leslie, C. C.;Johnston, Jr. R. B. https://doi.org/10.1002/jlb.41.5.450
  20. 嚴氏濟生方 嚴用和
  21. Life Sci. v.30 no.19 Naloxone enhances stress-induced in noradrenaline turnover in specific brain regions in rats Tanaka, M.;Kohno, Y.;Nakagawa, R.;Ida, Y.;Limori, K.;Hoaki, Y.;Tsuda, A.;Nagasaki, N. https://doi.org/10.1016/0024-3205(82)90499-4
  22. Kor. J. Pharmacogn. v.20 no.1 Effects of Glycyrrhizae Radix on serum corticosterone and blood histamine content by immobilization stress in mice Eun, J. S.;Oh, C. H.;Han, J. H.
  23. Pharmacol. Biochem. Behav. v.16 no.2 Time-related differences in noradrenaline turnover in rat brain regions by stress Tanaka, M.;Kohno, Y.;Nakagawa, R.;Ida, Y.;Takeda, S.;Nagasaki, N. https://doi.org/10.1016/0091-3057(82)90166-6
  24. Kor. J. Clin. Pharm. v.7 no.2 Effects of berberine on serum levels of catecholamines after immobilization stress in mice Shin, J. S.;Lee, S. S.;Kim, E. I.;Shim, S. M.;Lee, M. K.
  25. J. UOEH v.15 no.2 Stress-induced immune changes, and brain-immune interaction Nagata, S. https://doi.org/10.7888/juoeh.15.161
  26. Life Sci. v.47 no.10 Prevention of immunosuppression in stressed mice by neurotropin(NSP) Teshima, H.;Sogawa, H.;Kihara, H.;Kubo, C.;Mori, K.;Nakagawa, T. https://doi.org/10.1016/0024-3205(90)90600-V
  27. Life Sciences v.49 no.21 Influence of stress on the maturity of T-cells Teshima, H.;Sogawa, H.;Kihara, H.;Nakagawa, T. https://doi.org/10.1016/0024-3205(91)90330-E
  28. Prog. Neuropsychopharmacol. Biol. Psychiatry. v.14 no.4 Immobilization 12 days (but not one hour) earlier enhanced 2-deoxy-D-glucose-induced immunosuppression: evidence for stressor-induced time-dependent sensitization of the immune system Antelman, S.M.;Cunnick, J.E.;Lysle, D.T.;Caggiula, A.R.;Knopf, S.;Kocan, D.J.;Rabin, B.S.;Edwards, D.J. https://doi.org/10.1016/0278-5846(90)90009-6
  29. Physiol. Behav. v.63 no.3 Prenatal stress depresses immune function in rats Kay, G.;Tarcic, N.;Poltyrev, T.;Weinstock, M. https://doi.org/10.1016/S0031-9384(97)00456-3
  30. Naturwissenschaften v.83 no.5 Stress and the immune system Schedlowski, M.;Schmidt, R.E. https://doi.org/10.1007/BF01143326
  31. Physiol. Behav. v.65 no.1 Differential immune reactivity to stress in BALB/cByJ and C57BL/6J mice: in vivo dependence on macrophages Shanks, N.;Kusnecov, A.W. https://doi.org/10.1016/S0031-9384(98)00149-8
  32. New. Engl. J. Med. v.294 no.6 Histamine (second of two parts) Beaven, M.A. https://doi.org/10.1056/NEJM197602052940608
  33. Experientia v.26 no.7 Evidence for a cholinergic mechanism inducing histamine increase in the rat brain in vivo Campos, H.A.;Jurpe, H. https://doi.org/10.1007/BF02232522
  34. Anticancer Res. v.17 no.6D Repeated restraint stress impairs the antitumor T cell response through its suppressive effect on Th1-type CD4+ T cells Li, T.;Harada, M.;Tamada, K.;Abe, K.;Nomoto, K.
  35. Acta Endocrinol. v.112 no.1 Possible role of glucocorticoids in a complement-activated state induced by cobra venom factor in rats Nakano, K.;Suzuki, S.;Oh, C.H.;Yamashita, K.
  36. Brain Behavior and Immunity v.1 no.2 Significance of increased secretion of glucocorticoids in mice and rats injected with bacterial endotoxin Nakano K.;Suzuki S.;Oh C. https://doi.org/10.1016/0889-1591(87)90018-3
  37. Kor. J. Immunol. v.18 Nitric oxide inhibits macrophage pseudopodia formation in the activated macrophages Jun, C.D.;Park, S.K.;Kim, J.M.;Kim, J.D.;Kim, S.H.