• Title/Summary/Keyword: cell dimension

Search Result 208, Processing Time 0.026 seconds

A Study on Standard Design Procedure and Optimum Dimension of Embedded Steel-Plate Cell Structure (근입식 강판셀 구조 설계표준화 및 최적제원 결정에 관한 연구)

  • Park, Yong Myung;Kim, Tae Jin
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.3 s.40
    • /
    • pp.259-270
    • /
    • 1999
  • In this study, establishment of standard design procedure and optimum dimension of the embedded steel-plate cellular bulkheads for seawall structures in deep water sites has been presented. A computer program was developed to asses feasible dimensions of steel-plate cell, and general equations to determine optimum cell diameter and embedment depth are derived for sand. A model experiment to verify the necessary driving force of vibratory hammer system was also performed and driving force data pertinent to optimum cell dimension are presented.

  • PDF

The Analysis of Fractal Dimension on the Main-Stream Length using Digital Elevation Model (수치고도모형을 이용한 본류하천길이에 관한 프랙탈 차원의 해석)

  • 차상화
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.915-923
    • /
    • 2002
  • Recently, GIS(Geographic Information System) is used to extract various hydrological factors from DEM(Digital Elevation Model) in river basin. Therefore, this study aims at the determination of river fractal dimension using DEM. In this paper, the main-stream length in river basin was grid-analyzed for each scale(1/5,000, 1/25,000, 1/50,000) and each cell size(5m$\times$5m, l0m$\times$l0m, 20m$\times$20m, 30m$\times$30m, 40m$\times$40m, 50m$\times$50m, 60m$\times$60m, 70m$\times$70m, 80m$\times$80m, 90m$\times$90m, 100m$\times$l00m, 120m$\times$120m, 150m$\times$150m) using GIS. Also, fractal dimension was derived by analyzing correlation among main-stream lengths, scale, and cell size which were calculated here. The result of calculating fractal dimension for each cell size shows that the fractal dimension on the main-stream length is 1.028.

Study on Visual Patterns about Spatial Dimensions - Centered on the Golden Ratio, Fibonacci Sequence, and Fractal Theory - (공간 차원에 관한 시각적 패턴 연구 - 황금비, 피보나치 수열, 프랙털 이론을 중심으로 -)

  • Kim, Min-Suk;Kim, Kai-Chun
    • Korean Institute of Interior Design Journal
    • /
    • v.23 no.1
    • /
    • pp.88-95
    • /
    • 2014
  • This study intended arousal of other viewpoints that deal with and understand spaces and shapes, by describing the concept of 'dimensions' into visual patterns. Above all, the core concept of spatial dimensions was defined as 'expandability'. Then, first, the 'golden ratio', 'Fibonacci sequence', and 'fractal theory' were defined as elements of each dimension by stage. Second, a 'unit cell' of one dimension as 'minimum unit particles' was set. Next, Fibonacci sequence was set as an extended concept into two dimensions. Expansion into three dimensions was applied to the concept of 'self-similarity repetition' of 'Fractal'. In 'fractal dimension', the concept of 'regularity of irregularity' was set as a core attribute. Plus, Platonic solids were applied as a background concept of the setting of the 'unit cell' from the viewpoint of 'minimum unit particles'. Third, while 'characteristic patterns' which are shown in the courses of 'expansion' of each dimension were embodied for the visual expression forms of dimensions, expansion forms of dimensions are based on the premise of volume, directional nature, and concept of axes. Expressed shapes of each dimension are shown into visually diverse patterns and unexpected formative aspects, along with the expression of relative blank spaces originated from dualism. On the basis of these results, the 'unit cell' that is set as a concept of theoretical factor can be defined as a minimum factor of a basic algorism caused by other purpose. In here, by applying diverse pattern types, the fact that meaning spaces, shapes, and dimensions can be extracted was suggested.

Effects of the Particle Electric Conductivity on the Aggregation of Unipolar Charged Nanoparticles (단극하전 나노입자의 응집성장 과정에서 입자의 전기전도도의 효과에 대한 연구)

  • Park, Hyung-Ho;Kim, Sang-Soo;Chang, Hyuk-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.2
    • /
    • pp.173-180
    • /
    • 2003
  • Effects of the electric conductivity of particles were studied for the aggregation process of charged particles with a Brownian dynamic simulation in the free molecular regime. A periodic boundary condition was used for the calculation of the aggregation process in each cell with 500 primary particles of 16 nm in diameter. We considered two extreme cases, a perfect conductor and a perfect nonconductor. The electrostatic force on a particle in the simulation cell was considered as a sum of electrostatic forces from other particles in the original cell and its replicate cells. We assumed that aggregates were only charged with pre-charged primary particles. The morphological shape of aggregates was described in terms of the fractal dimension. The fractal dimension for the uncharged aggregate was D$_{f}$= 1.761. However, the fractal dimension decreased from 1.694 to 1.360 for the case of the perfect conductor, and from 1.610 to 1.476 for the case of the perfect nonconductor, with the increase of the average number of charges on the primary particle from 0.2 to 0.3. These values were smaller than that of the centered charge case.e.

A New type $1.0\;mm\;{\times}\;0.5mm$ Light Emitting Diode using AlInGaN cell structure and Its Display Module

  • Park, Book-Sung;Kim, Sung-Woon;Lee, Seon-Gu;Son, Sung-Il;Kim, Eun-Tae;Kim, Chul-Ju
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.557-560
    • /
    • 2008
  • The main goal of this work is to fabricate light emitting diode (LED) module and apply it to mobile handset. We first fabricated the blue-color LED based on the AlInGaN cell structure with size of $200\;{\mu}m\;{\times}\;200\;{\mu}m$. Also we proposed a new $1.0\;mm\;{\times}\;0.5\;mm$ (1005size) packaging procedure for the LED cell. Thus the overall dimension of our LED cell was as small as $1.0\;mm\;{\times}\;0.5\;mm\;{\times}\;0.4\;mm$ ($W\;{\times}\;L\;{\times}\;T$). As far as we knew it was the first time that this small LED cell dimension had been fabricated and operated.

  • PDF

Three-Dimensional Numerical Analysis of Spinning Detonation Wave (Spinning Detonation 파의 3차원 수치 해석)

  • Cho, Deok-Rae;Choi, Jeong-Yeol;Won, Su-Hee
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.205-212
    • /
    • 2006
  • Three-dimensional numerical study was carried out for the investigation of the detonation wave structures propagating in tubes. Fluid dynamics equations and conservation equation of reaction progress variable were analyzed by a MUSCL-type TVD scheme and four stage Runge-Kutta time integration. Chemical reaction was modeled by using a simplified one-step irreversible kinetics model. The variable gas properties between unburned and burned states were considered by using variable specific heat ratio formulation. The unsteady computational results in three-dimension show the detailed mechanisms of rectangular and diagonal mode of detonation wave instabilities resulting same cell length but different cell width in smoked-foil record. The results for the small reaction constant shows the spinning mode of three-dimensional detonation wave dynamics, which was rarely observed in the previous numerical simulation of the detonation waves.

  • PDF

Numerical Simulation far the Non-Spherical Aggregation of Charged Particles (하전 입자의 비구형 응집 성장에 대한 수치적 연구)

  • Park, Hyeong-Ho;Kim, Sang-Su;Jang, Hyeok-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.227-237
    • /
    • 2002
  • A numerical technique for simulating the aggregation of charged particles was presented with a Brownian dynamic simulation in the free molecular regime. The Langevin equation was used for tracking each particle making up an aggregate. A periodic boundary condition was used for calculation of the aggregation process in each cell with 500 primary particles of 16 nm in diameter. We considered the thermal force and the electrostatic force for the calculation of the particle motion. The electrostatic force on a particle in the simulation cell was considered as a sum of electrostatic forces from other particles in the original cell and its replicate cells. We assumed that the electric charges accumulated on an aggregate were located on its center of mass, and aggregates were only charged with pre-charged primary particles. The morphological shape of aggregates was described in terms of the fractal dimension. In the simulation, the fractal dimension for the uncharged aggregate was D$\_$f/ = 1.761. The fractal dimension changed slightly for the various amounts of bipolar charge. However, in case of unipolar charge, the fractal dimension decreased from 1.641 to 1.537 with the increase of the average number of charges on the particles from 0.2 to 0.3 in initial states. In the bipolar charge state, the average sizes of aggregates were larger than that of the uncharged state in the early and middle stages of aggregation process, but were almost the same as the case of the uncharged state in the final stage. On the other hand, in the unipolar charge state, the average size of aggregates and the dispersion of particle volume decreased with the increasing of the charge quantities.

Numerical Simulation for the Aggregation of Charged Particles (하전입자의 응집성장에 대한 수치적 연구)

  • Park, Hyung-Ho;Kim, Sang-Soo;Chang, Hyuk-Sang
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.605-611
    • /
    • 2001
  • A numerical technique for simulating the aggregation of charged particles was presented with a Brownian dynamic simulation in the free molecular regime. The Langevin equation was used for tracking each particle making up an aggregate. A periodic boundary condition was used for calculation of the aggregation process in each cell with 500 primary particles of 16 nm in diameter. We considered the thermal force and the electrostatic force for the calculation of the particle motion. The morphological shape of aggregates was described in terms of the fractal dimension. The fractal dimension for the uncharged aggregate was $D_{f}=1.761$. The fractal dimension changed slightly for the various amounts of bipolar charge. However, in case of unipolar charge, the fractal dimension decreased from 1.641 to 1.537 with the increase of the average number of charges on the particles from 0.2 to 0.3 in initial states.

  • PDF

The Anlysis of Fractal Characteristics in River Basin using GIS (GIS를 이용한 하천유역의 프랙탈 특성 분석)

  • Cha, Sang-Hwa;Kwon, Kee-Wook
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.4 no.4
    • /
    • pp.51-60
    • /
    • 2001
  • This study analyzed fractal characteristics of river basin by using GIS. In this study, topographical factors in river basin was grid-analyzed for each cell size by using GIS and regression formula was derived by analyzing correlation among topographical factors and cell size which were calculated here. And, analysis of fractal characteristics of river by using the result calculated from 1) showed that among topographical factors, river length only increases according as cell size increases. The result of calculating fractal dimension for each cell size shows that river length, basin area, and centroidal flow path are 1.028, 1.0026 and 1.0061 respectively.

  • PDF

An Efficient Algorithm for Performance Analysis of Multi-cell and Multi-user Wireless Communication Systems

  • Wang, Aihua;Lu, Jihua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.11
    • /
    • pp.2035-2051
    • /
    • 2011
  • Theoretical Bit Error Rate (BER) and channel capacity analysis are always of great interest to the designers of wireless communication systems. At the center of such analyses people are often encountered with a high-dimensional multiple integrals with quite complex integrands. Conventional Gaussian quadrature is inefficient in handling problems like this, as it tends to entail tremendous computational overhead, and the principal order of its error term increase rapidly with the dimension of the integral. In this paper, we propose a new approach to calculate complex multi-fold integrals based on the number theory. In contrast to Gaussian quadrature, the proposed approach requires less computational effort, and the principal order of its error term is independent of the dimension. The effectiveness of the number theory based approach is examined in BER and capacity analyses for practical systems. In particular, the results generated by numerical computation turn out in good match with that of Monte-Carlo simulations.