• 제목/요약/키워드: cell design

검색결과 3,227건 처리시간 0.036초

Advanced Interchangeable Dynamic Simulation Model for the Optimal Design of a Fuel Cell Power Conditioning System

  • Kim, Jong-Soo;Choe, Gyu-Yeong;Lee, Byoung-Kuk;Shim, Jae-Sun
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권4호
    • /
    • pp.561-570
    • /
    • 2010
  • This paper presents an advanced dynamic simulation model of a proton exchange membrane fuel cell for the optimal design of a fuel cell power conditioning system (FC-PCS). For the development of fuel cell models, the dynamic characteristics of the fuel cell are considered, including its static characteristics. Then, software fuel cell simulation is realized using Matlab-Simulink. Specifically, the design consideration of PCS (i.e., power semiconductor switch, capacitor, and inductor) is discussed by comparatively analyzing the developed simulator and ideal DC source. In addition, a cosimulation between the fuel cell model and PCS realized using the PSIM software is performed with the help of the SimCoupler module. Detailed analysis and informative simulation results are provided for the optimal design of fuel cell PCS.

가압형 고체산화물 연료전지/가스터빈 하이브리드 시스템의 현실적 설계 (A Practical Design of Pressurized Solid Oxide Fuel Cell/Gas Turbine Hybrid Systems)

  • 오경석;박성구;김동섭
    • 대한기계학회논문집B
    • /
    • 제31권2호
    • /
    • pp.125-131
    • /
    • 2007
  • This paper presents guideline for a practical design of the hybrid system combining a pressurized solid oxide fuel cell and a gas turbine. Design of the hybrid system based on a virtually designed gas turbine was simulated using models for off-design operation of the gas turbine. Two system configurations, with different method for supplying reforming steam, are considered and their design characteristics are compared. A higher design cell temperature provides better system performance. However, there exists a maximum allowable design cell temperature because the operating point of the compressor approaches the surge point with increasing fuel cell temperature. Increased pressure loss at the fuel cell moves the compressor operating point toward the surge point and reduces system performance.

CFD를 통한 용융탄산염 연료전지 단위전지용 셀 프레임 구조 설계 (Design of Cell Frame Structure of Unit Cell for Molten Carbonate Fuel Cell Using CFD Analysis)

  • 이성주;임치영;이창환
    • 한국수소및신에너지학회논문집
    • /
    • 제29권1호
    • /
    • pp.56-63
    • /
    • 2018
  • In this study, a $100cm^2$ cell frame for a molten carbonate fuel cell was designed using CFD analysis. Electrochemical reactions, gas flow, and the heat transfer in $100cm^2$ cell frame were modeled using COMSOL Multiphysics. Two design variables such as the height of the cell frame and the length of the gas input area were determined to obtain minimized temperature distribution and uniform gas distribution. With two design parameter such as height of the cell frame and the length of the gas flow channel, the temperature difference in the cell fame was decreased to $5^{\circ}C$ and the gas uniformity in the flow channel were achieved.

작업부하에 의한 생산셀 설계 모델과 셀설계지원시스템 (A manufacturing cell design model and cell design support system based on workload)

  • 문치웅;이상용
    • 경영과학
    • /
    • 제12권1호
    • /
    • pp.51-60
    • /
    • 1995
  • This paper presents a workload based model and cell design support system (CDSS) in manufacturing cell design. The proposed model consider manufacturing factor such as machine capacity, production volume, process time, and cell size. Based on those information, workload is calculated and according to the workload, the relationship between machine and part is represented by the workload matrix. To form the manufacturing cell, correlation similarity coefficient (CSC) among machines are calculated and a pair of machines that has the highest value of CSC is assigned to a machine cell. Repeat the above steps until the desired manufacturing cells are obtained. Finally, a cell design support system that could increase the efficiency in the application of a proposed model is developed. The proposed model and CDSS are illustrated by a numerical example.

  • PDF

사례 연구 - 3차원 역설계를 이용한 휴대폰 보호 커버 설계 (Case study - Design a cell phone cover by using reverse engineering)

  • 김대준;성진호;정성대;정연찬
    • Design & Manufacturing
    • /
    • 제6권1호
    • /
    • pp.29-33
    • /
    • 2012
  • A 3D scanner scans and captures the shape of a real-world object. The captured shape can be used to construct three-dimensional model for CAD/CAM applications. In this study we have tried to design a cell phone cover by using the 3D scanner and reverse engineering. A 3D scanner is used to capture the shape of a cell phone. The 3D scanner generates a point cloud as the shape information. A three-dimensional CAD model for the cell phone is constructed from the point cloud. A cell phone cover is designed based on the CAD model of the cell phone. To check the integrity of this design process a prototype of the cover is made and assembled with the cell phone.

  • PDF

Modular Cell을 이용한 RS 디코더의 집적회로 설계

  • 임충빈;이광엽;이문기;김용석;홍현석;송동일;김영웅
    • 한국통신학회:학술대회논문집
    • /
    • 한국통신학회 1986년도 추계학술발표회 논문집
    • /
    • pp.92-102
    • /
    • 1986
  • In this paper, Modular cell approach was applied to custom IC design or RS decoder. For the design of RS decoder by modular cells, 3 basic cells and one extra circuit are designed, these are, SYN cell for syndrome calculation, AL cell for error locator polynomial calculation, and REM cell for remaining error transform calculation. RS decoder design by these basic cells is very simple and regular, and naturally suitable for VLSI RS decoder design.

  • PDF

시뮬레이션 기반 연료전지/2차전지 하이브리드 미니버스의 설계 및 성능 평가 (Design and Performance Evaluation for a Fuel Cell/Battery Hybrid Mini-Bus Based on a Simulation)

  • 김민진;공낙원;이원용;김창수
    • 한국수소및신에너지학회논문집
    • /
    • 제18권1호
    • /
    • pp.60-66
    • /
    • 2007
  • In terms of the vehicle efficiency, a fuel cell hybrid system has advantages compared to a conventional internal combustion engine and a fuel cell alone-powered system. The efficiency of the fuel cell hybrid vehicle mainly depends on the maximum power of the fuel cell and therefore it is important to decide the design value of the fuel cell maximum power. In this paper, to estimate the performance of the fuel cell hybrid mini-bus in the design phase the simulator based on the models for the fuel cell stack, the electric battery, the fuel cell balance of plant, the controller, and the vehicle itself is proposed. Additionally, the hybrid mini-bus efficiencies with several different fuel cell powers are simulated for a city driving schedule and are compared on another. Consequently, the proposed simulation scheme is useful to determine the best design value of the fuel cell hybrid vehicles.

풍동용 3 축 로드셀의 구조최적설계 (Optimum Structural Design of a Triaxial Load Cell for Wind Tunnel Test)

  • 이재훈;송창곤;박성훈
    • 한국정밀공학회지
    • /
    • 제28권2호
    • /
    • pp.226-232
    • /
    • 2011
  • In this study, an optimized design of a triaxial load cell has been developed by the use of finite element analysis, design of experiment and response surface method. The developed optimal design was further validated by both stress-strain analysis and natural vibration analysis under an applied load of 30 kgf. When vertical, horizontal, and axial loads of 30 kgf were applied to the load cell with the optimal design, the calculated strains were satisfied with the required strain range of $500{\times}10^{-6}{\pm}10%$. The natural vibration analysis exhibited that the fundamental natural frequency of the optimally designed load cell was 5.56 kHz and higher enough than a maximum frequency of 0.17 kHz which can be applied to the load cell for wind-tunnel tests. The satisfactory sensitivity in all triaxial directions also suggests that the currently proposed design of the triaxial load cell enables accurate measurements of the multi-axial forces in wind-tunnel tests.

유전 알고리즘에 기초한 제조셀의 설계 (Design of Manufacturing Cell based on Genetic Algorithm)

  • 조규갑;이병욱
    • 한국정밀공학회지
    • /
    • 제15권12호
    • /
    • pp.72-80
    • /
    • 1998
  • In this study, a design approach based on genetic algorithm is proposed to solve the manufacturing cell design problem considering alternative process plans and alternative machines. The problem is formulated as a 0-1 integer programming model which considers several manufacturing parameters, such as demand and processing time of part, machine capacity, manufacturing cell size, and the number of machines in a machine cell. A genetic algorithm is used to determine process plan for each part, part family and machine cell simultaneously.

  • PDF

고분자 전해질 연료전지용 분리판 최적 설계 (Optimal Design of Bipolar-Plates for a PEM Fuel Cell)

  • 한인수;정지훈;임종구;임찬;정광섭
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.99-102
    • /
    • 2006
  • Optimal flow-field design of bipolar-plates for a commercial class PEM(polymer electrolyte membrane) fuel cell stack was carried out on the basis of three-dimensional computational fluid dynamics(CFD) simulation. A three-dimensional CFD model originally developed by Shimpalee et al., has been utilized for performing large-scale simulation of a single fuel cell consisting of bipolar-plates gas diffusion layers, and a membrane-electrode-assembly(MEA). The CFD model is able to predict the current density, pressure drops, gas velocities, vapor and liquid water contents, temperature distributions, etc. inside a single fuel cell. Depending on simulation results from the CFD modeling of a PEM fuel cell, several flow-fields of bipolar-plates were designed and verified. The final design of the bipolar-plate has been chosen from the simulations and experimental tests and showed the best performance as expected from the simulation results under a normal operating condition. Thus, the CFD simulation approach to design the optimal flow-field of the bipolar-plates was successful. The final design was adopted as the best flow-field to build a commercial scale PEM fuel cell stack, the performance of which shows about 42% higher than that of the older bipolar-plate design.

  • PDF