• 제목/요약/키워드: cell culture model

검색결과 383건 처리시간 0.027초

10대 청소년의 인터넷.휴대폰 중독 관점에서의 정보문화지수에 대한 고찰 (Information Culture Index Analysis from the Perspective of the Internet.Cell-Phone Addiction)

  • 고영민;김형철;박찬정;현정석;김철민
    • 컴퓨터교육학회논문지
    • /
    • 제14권3호
    • /
    • pp.13-23
    • /
    • 2011
  • 정보문화지수는 국민의 정보 활용 수준을 지식, 도덕, 감성, 실천의 관점에서 종합적으로 진단하고 계량화한 수치로 네티즌의 정보문화수준을 나타낸다. 한편, 최근 정보 활용 시 접근하게 되는 인터넷이나 휴대폰 중독이 심각해지면서 이들 관점에서의 정보문화지수에 대한 정의와 방향에 대한 분석이 필요하다. 본 논문에서는 정보문화지수가 높은 사람들의 특성을 분석하고 동시에 인터넷 및 휴대폰 중독 정도를 지수와 결합하여 통계적 분석을 실시함으로써 현재 정의된 정보문화지수의 의미를 분석하고 개선방향을 제안한다. 특히, 정보문화지수의 4가지 상위지표들 중에서 정보실천 영역의 의미를 분석한다. 이를 위해 설문지를 작성하여 설문을 실시하고 기본 통계적인 분석 및 구조 방정식 모델을 이용한 분석을 실시하고 그 결과를 제시한다.

  • PDF

Establishment and characterization of gastric surface mucous cell lines (GSM06 and GSM10) from transgenic mice harboring temperature-sensitive simian virus 40 large T-antigen gene

  • Tabuchi, Yoshiaki;Sugiyama, Norifumi;Horiuchi, Tadashi;Furuhama, Kazuhisa;Obinata, Masuo;Furusawa, Mitsuru
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1994년도 춘계학술대회 and 제3회 신약개발 연구발표회
    • /
    • pp.131-136
    • /
    • 1994
  • In the present study, in order to make an in vitro model of gastric mucosa for physiological and pharmacological studies, we established two immortalized gastric surface mucous cell lines (GSM06 and GSM10), which produce periodic acid-Schiff (PAS)-and concanavalin A (Con A)-positive glycoproteins, from a primary culture of gastric fundic mucosal cells of adult transgenic mice harboring a temperature-sensitive simian virus 40 large T-antigen gene 〔1]. Gastric fundic mucosal cells were isolated as a modification of a previously described method for rats by Schepp et al. (2). The isolated gastric fundic mucosal cells were cultured in DME/F12 medium supplemented with 2% fetal bovine serum (FBS), 1% ITES (consisting of 2 mg/1 insulin, 2 mgg/1 transferrin, 0.122 mg/1 ethanolamine and 0.00914 mg/1 sodium selenite) and 10 ng/ml recombinant epidermal growth factor (EGF) in a collagen-coated culture dish. To remove fibroblastic cells from the culture, gastric mucosal cells were incubated in the culture medium containing dispase (25 U/ml) for 24 h. The cells, uncontaminated with fibroblastic cells, were then cloned by colony formation. In our series of three attempts, two cell lines (GSM06 and GSM10) have been established at last. The cells proliferated, attached to the dish ana grew until confluent monolayers were formed, and maintained tight contact with neighboring cells. Both GSM06 and GSM10 cells have now been in culture for more than 9 months with regular passaging. The either cell produced

  • PDF

HBD: A new tool to enhance human skin self-defence against micro-organisms

  • Ingrid Pernet;Corinne Reymermier;Anne Guezennec;Jacqueline Viac;Branca, Jean-Eric;Joelle Guesnet;Eric Perrier
    • 대한화장품학회:학술대회논문집
    • /
    • 대한화장품학회 2003년도 IFSCC Conference Proceeding Book I
    • /
    • pp.85-96
    • /
    • 2003
  • Normal human skin, constantly challenged by environmental micro-organisms, has an innate ability to fight invading microbes through antimicrobial peptides. These peptides, described in both plant and animal kingdoms are able to inactivate a broad spectrum of micro-organisms. Mammalian defensins constitute one of the most common antimicrobial peptide family. Among the three human beta-defensins hBD1, hBD2 and hBD3 produced in epithelia, only hBD2 and hBD3 are inducible and additionally have been described as expressed by differentiated keratinocytes at site of inflammation and infection. The aims of these studies were to define a cell culture model in which the basal production of hBD could be detected and up-regulated in order to enhance skin auto-protection against micro-organisms. A specific Polymerase Chain Reaction method have been developed for hBD2 and hBD3 mRNA detection in non-differentiated monolayer keratinocytes cell culture. We have been able to demonstrate that in vitro, hBD2 and hBD3 expression in normal human keratinocytes could be detected and enhanced by TNF-alpha and IFN-gamma, in hypercalcic culture conditions. This research opened the possibility of the development of cosmetic active compounds, able to induce the expression of skin natural antibiotic peptides responsible about microflora ecology of the skin.

  • PDF

Investigating the Morphology and Kinetics of Three-Dimensional Neuronal Networks on Electro-Spun Microstructured Scaffolds

  • Kim, Dongyoon;Kim, Seong-Min;Kang, Donghee;Baek, Goeun;Yoon, Myung-Han
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.277.2-277.2
    • /
    • 2013
  • Petri dishes and glass slides have been widely used as general substrates for in vitro mammalian cell cultures due to their culture viability, optical transparency, experimental convenience, and relatively low cost. Despite the aforementioned benefit, however, the flat two-dimensional substrates exhibit limited capability in terms of realistically mimicking cellular polarization, intercellular interaction, and differentiation in the non-physiological culture environment. Here, we report a protocol of culturing embryonic rat hippocampal neurons on the electro-spun polymeric network and the results from examination of neuronal cell behavior and network formation on this culture platform. A combinatorial method of laser-scanning confocal fluorescence microscopy and live-cell imaging technique was employed to track axonal outgrowth and synaptic connectivity of the neuronal cells deposited on this model culture environment. The present microfiber-based scaffold supports the prolonged viability of three-dimensionally-formed neuronal networks and their microscopic geometric parameters (i.e., microfiber diameter) strongly influence the axonal outgrowth and synaptic connection pattern. These results implies that electro-spun fiber scaffolds with fine control over surface chemistry and nano/microscopic geometry may be used as an economic and general platform for three-dimensional mammalian culture systems, particularly, neuronal lineage and other network forming cell lines.

  • PDF

Insulin enhances neurite extension and myelination of diabetic neuropathy neurons

  • Pham, Vuong M.;Thakor, Nitish
    • The Korean Journal of Pain
    • /
    • 제35권2호
    • /
    • pp.160-172
    • /
    • 2022
  • Background: The authors established an in vitro model of diabetic neuropathy based on the culture system of primary neurons and Schwann cells (SCs) to mimic similar symptoms observed in in vivo models of this complication, such as impaired neurite extension and impaired myelination. The model was then utilized to investigate the effects of insulin on enhancing neurite extension and myelination of diabetic neurons. Methods: SCs and primary neurons were cultured under conditions mimicking hyperglycemia prepared by adding glucose to the basal culture medium. In a single culture, the proliferation and maturation of SCs and the neurite extension of neurons were evaluated. In a co-culture, the percentage of myelination of diabetic neurons was investigated. Insulin at different concentrations was supplemented to culture media to examine its effects on neurite extension and myelination. Results: The cells showed similar symptoms observed in in vivo models of this complication. In a single culture, hyperglycemia attenuated the proliferation and maturation of SCs, induced apoptosis, and impaired neurite extension of both sensory and motor neurons. In a co-culture of SCs and neurons, the percentage of myelinated neurites in the hyperglycemia-treated group was significantly lower than that in the control group. This impaired neurite extension and myelination was reversed by the introduction of insulin to the hyperglycemic culture media. Conclusions: Insulin may be a potential candidate for improving diabetic neuropathy. Insulin can function as a neurotrophic factor to support both neurons and SCs. Further research is needed to discover the potential of insulin in improving diabetic neuropathy.

Long-Duration Three-Dimensional Spheroid Culture Promotes Angiogenic Activities of Adipose-Derived Mesenchymal Stem Cells

  • Lee, Jun Hee;Han, Yong-Seok;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • 제24권3호
    • /
    • pp.260-267
    • /
    • 2016
  • Mesenchymal stem cells (MSCs) offer significant therapeutic promise for various regenerative therapies. However, MSC-based therapy for injury exhibits low efficacy due to the pathological environment in target tissues and the differences between in vitro and in vivo conditions. To address this issue, we developed adipose-derived MSC spheroids as a novel delivery method to preserve the stem cell microenvironment. MSC spheroids were generated by suspension culture for 3 days, and their sizes increased in a time-dependent manner. After re-attachment of MSC spheroids to the plastic dish, their adhesion capacity and morphology were not altered. MSC spheroids showed enhanced production of hypoxia-induced angiogenic cytokines such as vascular endothelial growth factor (VEGF), stromal cell derived factor (SDF), and hepatocyte growth factor (HGF). In addition, spheroid culture promoted the preservation of extracellular matrix (ECM) components, such as laminin and fibronectin, in a culture time- and spheroid size-dependent manner. Furthermore, phosphorylation of AKT, a cell survival signal, was significantly higher and the expression of pro-apoptotic molecules, poly (ADP ribose) polymerase-1 (PARP-1) and cleaved caspase-3, was markedly lower in the spheroids than in MSCs in monolayers. In the murine hindlimb ischemia model, transplanted MSC spheroids showed better proliferation than MSCs in monolayer. These findings suggest that MSC spheroids promote MSC bioactivities via secretion of angiogenic cytokines, preservation of ECM components, and regulation of apoptotic signals. Therefore, MSC spheroid-based cell therapy may serve as a simple and effective strategy for regenerative medicine.

Identification of a Cancer Stem-like Population in the Lewis Lung Cancer Cell Line

  • Zhang, An-Mei;Fan, Ye;Yao, Quan;Ma, Hu;Lin, Sheng;Zhu, Cong-Hui;Wang, Xin-Xin;Liu, Jia;Zhu, Bo;Sun, Jian-Guo;Chen, Zheng-Tang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권3호
    • /
    • pp.761-766
    • /
    • 2012
  • Objective: Although various human cancer stem cells (CSCs) have been defined, their applications are restricted to immunocompromised models. Developing a novel CSC model which could be used in immunocompetent or transgenic mice is essential for further understanding of the biomolecular characteristics of tumor stem cells. Therefore, in this study, we analyzed murine lung cancer cells for the presence of CSCs. Methods: Side population (SP) cells were isolated by fluorescence activated cell sorting, followed by serum-free medium (SFM) culture, using Lewis lung carcinoma cell (LLC) line. The self-renewal, differentiated progeny, chemosensitivity, and tumorigenic properties in SP and non-SP cells were investigated through in vitro culture and in vivo serial transplantation. Differential expression profiles of stem cell markers were examined by RT-PCR. Results: The SP cell fraction comprised 1.1% of the total LLC population. SP cells were available to grow in SFM, and had significantly enhanced capacity for cell proliferation and colony formation. They were also more resistant to cisplatin in comparison to non-SP cells, and displayed increased tumorigenic ability. Moreover, SP cells showed higher mRNA expression of Oct-4, ABCG2, and CD44. Conclusion: We identified SP cells from a murine lung carcinoma, which possess well-known characteristics of CSCs. Our study established a useful model that should allow investigation of the biological features and pharmacosensitivity of lung CSCs, both in vitro and in syngeneic immunocompetent or transgenic/knockout mice.

Attenuation of Brain Injury by Water Extract of Goat's-beard (Aruncus dioicus) and Its Ethyl Acetate Fraction in a Rat Model of Ischemia-Reperfusion

  • Han, Hyung-Soo;Lee, Jong-Won
    • Preventive Nutrition and Food Science
    • /
    • 제16권3호
    • /
    • pp.217-223
    • /
    • 2011
  • Ischemic stroke constitutes about 80% of all stroke incidences. It is characterized by brain cell death in a region where cerebral arteries supplying blood are occluded. Under these ischemic conditions, apoptosis is responsible for the cell death, at least in part. Goat's-beard (Aruncus dioicus var. kamtschaticus) is a perennial plant that grows naturally in the alpine regions of Korea. In the present study, we first determined whether water extract of goat's-beard (HY1646) and some of its fractions prepared by partitioning with organic solvents could improve the viability of human hepatocellular carcinoma cells (HepG2) cultured under hypoxic condition by blocking apoptotic pathways. Based on the in vitro findings, we subsequently investigated whether HY1646 and the ethyl acetate fraction (EA) selected from cell culture-based screening could attenuate brain injury in a rat middle cerebral artery occlusion (MCAO) model of ischemia (2 hr), followed by 22 hours of reperfusion. The cell number was sustained close to that initially plated in the presence of HY1646 even after 24 hr of cell culture under hypoxic condition (3% $O_2$), at which time the cell number reached almost zero in the absence of HY1646. This improvement in cell viability was attributed to the delay in apoptosis, identified by the formation of DNA ladder in gel electrophoresis. Of fractions soluble in hexane, ethyl acetate (EA) and butanol, EA was chosen for the animal experiments because EA demonstrated the best cell viability at the lowest concentration (10 ${\mu}g$/mL). HY1646 (200 mg/kg) and EA (10 and 20 mg/kg) significantly reduced infarct size, an index of brain injury, by 16.6, 40.0 and 61.0%, respectively, as assessed by 2,3,5-triphenyl tetrazolium chloride staining. The findings suggest that prophylactic intake of goat's beard might be beneficial for preventing ischemic stroke.

Stem Cell Biotechnology for Cell Therapy

  • LEE Dong-Ree;KIM Ha Won
    • Biomolecules & Therapeutics
    • /
    • 제13권4호
    • /
    • pp.199-206
    • /
    • 2005
  • Cell therapy (CT) is a group of techniques to treat human disorders by transplantation of cells which have been processed and propagated independent of the living body. Blood transfusion and bone marrow transplant have been the primary examples of cell therapy. With introduction of stem cell (SC) technologies, however, CT is perceived as the next generation of biologies to treat human diseases such as cancer, neurological diseases, and heart disease. Despite potential of cell therapy, insufficient guidelines have been implemented concerning safety test and regulation of cell therapy. This review addresses the safety issues to be resolved for the cell therapy, especially SC therapy, to be successfully utilized for clinical practice. Adequate donor cell screening must preceed to ensure safety in cell therapy. In terms of SC culture, controlled, standardized practices and procedures should be established. Further molecular studies should be done on SC development and differentiation to enhance safety level in cell therapy. Finally, animal model must be further installed to evaluate toxicity, new concepts, and proliferative potential of SC including alternative feeder layer of animal cells.

세포증식과 증식속도의 On-line Monitoring을 위한 Computer- coupled Mass Spectrometer의 응용 (Application of Computer-coupled Mass Spectrometer for Continuous On-line Monitoring of Cell Growth and Growth Rate)

  • 남수완;최춘순;김정회
    • 한국미생물·생명공학회지
    • /
    • 제17권3호
    • /
    • pp.241-246
    • /
    • 1989
  • Quadrupole mass spectrometer를 이용한 발효 배기가스의 분석을 통해 세포의 증식을 on-line monitoring하고자 model 균주로 Candida utilis에 대해 연구하였다. Quadrupole mass spectrometer와 interface된 16-bit 개인용 컴퓨터 (IBM PC-AT)에서 산소 소비속도(OUR)와 이산화탄소 발생속도(CER)를 on-line 계산할 수 있었고 계속해서 이들 계산치로부터 세포농도와 증식속도 및 비증식속도를 계산하였다. 계산된 값들은 실험적으로 측정한 세포농도 및 비증식속도와 잘 일치함을 알 수 있었다.

  • PDF