• Title/Summary/Keyword: cell control

Search Result 10,078, Processing Time 0.034 seconds

Nucleomodulin BspJ as an effector promotes the colonization of Brucella abortus in the host

  • Ma, Zhongchen;Yu, Shuifa;Cheng, Kejian;Miao, Yuhe;Xu, Yimei;Hu, Ruirui;Zheng, Wei;Yi, Jihai;Zhang, Huan;Li, Ruirui;Li, Zhiqiang;Wang, Yong;Chen, Chuangfu
    • Journal of Veterinary Science
    • /
    • v.23 no.1
    • /
    • pp.8.1-8.15
    • /
    • 2022
  • Background: Brucella infection induces brucellosis, a zoonotic disease. The intracellular circulation process and virulence of Brucella mainly depend on its type IV secretion system (T4SS) expressing secretory effectors. Secreted protein BspJ is a nucleomodulin of Brucella that invades the host cell nucleus. BspJ mediates host energy synthesis and apoptosis through interaction with proteins. However, the mechanism of BspJ as it affects the intracellular survival of Brucella remains to be clarified. Objectives: To verify the functions of nucleomodulin BspJ in Brucella's intracellular infection cycles. Methods: Constructed Brucella abortus BspJ gene deletion strain (B. abortus ∆BspJ) and complement strain (B. abortus pBspJ) and studied their roles in the proliferation of Brucella both in vivo and in vitro. Results: BspJ gene deletion reduced the survival and intracellular proliferation of Brucella at the replicating Brucella-containing vacuoles (rBCV) stage. Compared with the parent strain, the colonization ability of the bacteria in mice was significantly reduced, causing less inflammatory infiltration and pathological damage. We also found that the knockout of BspJ altered the secretion of cytokines (interleukin [IL]-6, IL-1β, IL-10, tumor necrosis factor-α, interferon-γ) in host cells and in mice to affect the intracellular survival of Brucella. Conclusions: BspJ is extremely important for the circulatory proliferation of Brucella in the host, and it may be involved in a previously unknown mechanism of Brucella's intracellular survival.

The Role of Ubiquitin-conjugating Enzymes as Therapeutic Targets in Cancer (암 치료 표적으로써 유비퀴틴 접합 효소 UBE2의 기능)

  • Seon Min Woo;Taeg Kyu Kwon
    • Journal of Life Science
    • /
    • v.33 no.6
    • /
    • pp.523-529
    • /
    • 2023
  • Ubiquitination is a post-translational modification that is involved in the quality control of proteins and responsible for modulating a variety of cellular physiological processes. Protein ubiquitination and deubiquitination are reversible processes that regulate the stability of target substrates. The ubiquitin proteasome system (UPS) helps regulate tumor-promoting processes, such as DNA repair, cell cycle, apoptosis, metastasis, and angiogenesis. The UPS comprises a combination of ubiquitin, ubiquitin-activating enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin-ligase enzymes (E3), which complete the degradation of target proteins. Ubiquitin-conjugating enzymes (UBE2s) play an inter-mediate role in the UPS process by moving activated ubiquitin to target proteins through E3 ligases. UBE2s consist of 40 members and are classified according to conserved catalytic ubiquitin-conjugating (UBC) domain-flanking extensions in humans. Since UBE2s have specificity to substrates like E3 ligase, the significance of UBE2 has been accentuated in tumorigenesis. The dysregulation of multiple E2 enzymes and their critical roles in modulating oncogenic signaling pathways have been reported in several types of cancer. The elevation of UBE2 expression is correlated with a worse prognosis in cancer patients. In this review, we summarize the basic functions and regulatory mechanisms of UBE2s and suggest the possibility of their use as therapeutic targets for cancer.

Investigation of Optimal Temperature and Salinity for Long Distance Transport of the pacific abalone (Haliotis discus hannai) (참전복(Haliotis discus hannai)의 장거리 수송을 위한 적정 수온 및 염분 조건 탐색)

  • Yang, Sung Jin;Min, Byung Hwa;Lee, Jeong Young;Jun, Je-Cheon;Myeong, Jeong-In
    • Journal of Marine Life Science
    • /
    • v.2 no.2
    • /
    • pp.39-48
    • /
    • 2017
  • This study was carried out to investigate the stress response of pacific abalone exposed to various water temperatures (4, 6, 8, and 10℃) and salinities (26, 30, and 34 psu) for 7 days, with the aim of finding optimum conditions for long-distance ocean transport of pacific abalone. At the end of the experiments, the survival rate was ranged from 98.7~100% at 8 and 10℃ but dropped to 25~55% at 4℃ in all salinity levels. The levels of SOD and glutathione in hemolymph were significantly higher at 4 and 6℃ than the control in all salinity groups, indicating that these temperatures induce severe stress in pacific abalone. It was found that THC was lowest at 6℃ in the 26 psu groups. The study showed that the hemocyte of pacific abalone populations mostly consisted of blast-like cells and hyalinocytes with the ratio of hyalinocytes being significantly lower at 4 and 6℃ than the other temperatures in the 26 psu groups. Percentages of apoptotic cells and necrotic cells were higher in the 26 psu group and 4 and 6℃ temperature groups. These results explicit that pacific abalone was exposed to greater stress at 26 psu and at 4 and 6℃ but experienced no significant higher stress at 30 and 34 psu and 8 and 10℃. It was therefore concluded that the optimum temperature and salinity for the long distance transport of pacific abalone range from 8~10℃ and 30~34 psu, respectively.

Suppressive Effects on Lipid Accumulation and Expression of Interleukin-1β-Mediated Inducible Nitric Oxide Synthase in 3T3-L1 Preadipocytes by a Standardized Commercial Noni Fruit Juice (Noni Fruit Juice의 3T3-L1 지방전구세포 분화 억제 및 인터루킨-1β 유도 Inducible Nitric Oxide Synthase 염증유전자 발현 감소 효과)

  • Byeong-Churl Jang
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.23 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • Objectives: Noni fruit juice (NFJ) is liquor extracted from Morinda citrifolia (noni) fruit and has been used as an herbal remedy in many countries. However, the NFJ's anti-adipogenic and anti-inflammatory effects on adipocytes are poorly understood. The purpose of this study was to explore the commercially standardized NFJ effects on lipid accumulation throughout 3T3-L1 preadipocytes differentiation and interleukin-1β (IL-1β)-mediated inducible nitric oxide synthase (iNOS) expression in 3T3-L1 preadipocytes. Methods: Cellular lipid accumulation and triglyceride (TG) content in differentiating 3T3-L1 preadipocytes were assessed subsequently via the Oil Red O staining and AdipoRed assay. MTS assay was used to examine NFJ cytotoxicity in (differentiating) 3T3-L1 preadipocytes. Immunoblotting and reverse transcriptase polymerase chain reaction analysis were used to measure the expression levels of target protein and mRNA in (differentiating) 3T3-L1 preadipocytes, respectively. Results: NFJ treatment at 150 μL/mL led to a substantial reduction of fat accumulation and TG content during 3T3-L1 adipogenesis with no discernable impact on the cell viability. Of note, while NFJ treatment (150 μL/mL) largely inhibited the CCAAT/enhancer-binding protein-α (C/EBP-α) and peroxisome proliferator-activated receptor-β (PPAR-β) protein expressions, it did not influence PPAR-γ in differentiating 3T3-L1 preadipocytes. Of interest, treatment with IL-1β at 20 ng/mL for 4 hours elicited in firm induction of iNOS mRNA expression in 3T3-L1 preadipocytes. However, NFJ treatment at 100 or 200 μL/mL greatly attenuated the IL-1β-induced iNOS mRNA expression in 3T3-L1 preadipocytes. Conclusions: NFJ has anti-adipogenic and anti-inflammatory effects on (differentiating) 3T3-L1 preadipocytes which are in part intervened via control of the expression of C/EBP-α, PPAR-β, and iNOS.

Metagenomic analysis of viral genes integrated in whole genome sequencing data of Thai patients with Brugada syndrome

  • Suwalak Chitcharoen;Chureerat Phokaew;John Mauleekoonphairoj;Apichai Khongphatthanayothin;Boosamas Sutjaporn;Pharawee Wandee;Yong Poovorawan;Koonlawee Nademanee;Sunchai Payungporn
    • Genomics & Informatics
    • /
    • v.20 no.4
    • /
    • pp.44.1-44.13
    • /
    • 2022
  • Brugada syndrome (BS) is an autosomal dominant inheritance cardiac arrhythmia disorder associated with sudden death in young adults. Thailand has the highest prevalence of BS worldwide, and over 60% of patients with BS still have unclear disease etiology. Here, we performed a new viral metagenome analysis pipeline called VIRIN and validated it with whole genome sequencing (WGS) data of HeLa cell lines and hepatocellular carcinoma. Then the VIRIN pipeline was applied to identify viral integration positions from unmapped WGS data of Thai males, including 100 BS patients (case) and 100 controls. Even though the sample preparation had no viral enrichment step, we can identify several virus genes from our analysis pipeline. The predominance of human endogenous retrovirus K (HERV-K) viruses was found in both cases and controls by blastn and blastx analysis. This study is the first report on the full-length HERV-K assembled genomes in the Thai population. Furthermore, the HERV-K integration breakpoint positions were validated and compared between the case and control datasets. Interestingly, Brugada cases contained HERV-K integration breakpoints at promoters five times more often than controls. Overall, the highlight of this study is the BS-specific HERV-K breakpoint positions that were found at the gene coding region "NBPF11" (n = 9), "NBPF12" (n = 8) and long non-coding RNA (lncRNA) "PCAT14" (n = 4) region. The genes and the lncRNA have been reported to be associated with congenital heart and arterial diseases. These findings provide another aspect of the BS etiology associated with viral genome integrations within the human genome.

Effects of Spice Addition on the Inhibition of Bacterial Growth in Ground Chicken Meat (향신료 첨가에 의한 닭고기 분쇄육에서의 미생물 증식 억제 효과)

  • Seyun Jeong;Yong-Suk Kim
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.1
    • /
    • pp.19-25
    • /
    • 2023
  • Addition of spice for inhibition of bacterial growth in ground chicken meat was investigated. The ground chicken meat approximately contained 72.98±0.15% moisture, 23.37±0.46% crude protein, 1.00±0.03% crude fat, and 1.90±0.03% ashes. Addition of rosemary showed the maximum bacterial inhibition, followed by garlic and mustard. The inhibitory effect increased with the addition of a greater quantity of spices. The optimal added concentration of spices for inhibition of total viable cell and proliferation of Escherichia coli in ground chicken meat was 2%, 4%, and 1.2% for rosemary, garlic, and mustard, respectively. The growth inhibition of total viable cells and E. coli differed during storage period for MixA (97.4%) > rosemary (96.9%) > MixB (96.3%) > garlic (53.7%) > mustard (33.3%). The addition of sterilized garlic to ground chicken meat showed that the total viable cells was low at 2.6-3.0 log CFU/g on the 0-day and 2.4-3.2 log CFU/g on the 9-day, and the number decreased as the storage lengthened. Non-sterilized garlic treatment showed a higher number of total viable cells than the control group, and this increased with elapse of storage time. The number of E. coli, was low at 0.4-1.0 log CFU/g on the 0-day and 0.5-1.5 log CFU/g on the 9-day for the sterilized group, and the change during the storage showed a similar trend for the total viable cells. In conclusion, the microbial safety of ground chicken meat products was improved by various mixed applications of rosemary, garlic, and mustard.

Effect of Soybean Fermentation (Zen) Intake on Human Blood Characteristics of Mixed Lactobacilli and Saccharomyces (Lactobacilli와 Saccharomyces 혼합균주의 대두발효액(Zen) 섭취가 인체의 혈액성상에 미친 영향)

  • Won, Ryu Seo;Lee, Hyung H.
    • Journal of Naturopathy
    • /
    • v.8 no.1
    • /
    • pp.21-28
    • /
    • 2019
  • Purpose: The purpose of this study was to examine the impact of 12 Lactobacillus strains and four yeast mixed fermentation broth on the blood characteristics of subjects who consumed for eight weeks. Methods: Blood samples taken from the subjects and clinicopathologic blood components examined. Results: In the white blood cell count the mean pre-test value of the experimental group consumed Zen fermentation broth was 5.73×103 cells/µl, and the mean after-treatment was 5.37×103 cells/µl, but the difference was not significant. The control group was not significant. In the hemoglobin content, the mean value before the intake of the Zen-test group was 13.58 g/dl, and the consumption after the consumption was 14.77 g/dl, which significantly increased. Albumin content was 4.33 g/dl before intake and 4.36 g/dl after ingestion in the Zen-test group, but it increased without significance. Triglyceride content was 109.8 mg/dl in the Zen-test group and 99.83 mg/dl in the post-test group, but it was not significant. In the LDL-content the mean of the premeasured value was 109 mg/dl in the Zen-test group, and that of the post-test was 97.87 mg/dl, and the difference significantly decreased to 11.13 mg/dl. In the HDL content, the mean value of the pre-test was 51.4 mg/dl in the Zen-test group and 56.87 mg/dl in the post-test. Conclusion: After intake of Zen fermentation broth, mean values of leukocyte, albumin, and triglyceride were not significantly different in the experimental group, but hemoglobin, LDL and HDL were significantly different.

Scavenging Capacities of DPPH and ABTS Free Radicals and Anti-inflammatory Activities of Ethanol Extracts and their Fractions from Sophora tonkinensis

  • Eun Sun Moon;Ji Yoon Lee;Seongdae Kim;Chang Won Choi
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.46-46
    • /
    • 2021
  • The first purpose of this study was to evaluate the scavenging capacity (SC) of DPPH and ABTS free radicals for ethanol extract (STR-E) and its active fractions from Sophora tonkinensis root (STR). Four different fractions from STR-E were prepared by using different types of solvents such as chloroform (STR-E-C), ethyl acetate (STR-E-EA), n-butanol (STR-E-B), and water (STR-E-W). STR-E-C showed the highest value of total phenolic content, while STR-E showed the highest value of total flavonoid and terpenoid content. In STR-E and its four fractions, STR-E-EA showed the strongest SC with the lowest SC50 values of the DPPH radicals and ABTS radicals. The second purpose of this study was to evaluate anti-inflammatory activity in the lipopolysaccharide (LPS)-induced RAW 264.7 macrophages treated with STR-E, STR-E-C, and STR-E-EA, respectively. No cytotoxic effect to RAW 264.7 cells was observed at 20 ~ 25 ㎍/ml of STR-E, 10 ㎍/ml of STR-E-C, and 5 ㎍/ml of the STR-E-EA, presenting cell viability values close to that of the untreated control (100%). STR-E, STR-E-C, and STR-E-EA significantly suppressed the LPS-induced nitric oxide (NO) in a dose-dependent manner. Results of reverse-transcription (RT)-qPCR analysis showed that the peak mRNA levels of IL-1β, TNF-α, iNOS, IL-6, and IL-10 were observed in the LPS-stimulated macrophages at 4 h, 2 h, 12 h, 12 h, and 12 h, respectively. The peak mRNA levels of IL-1β, TNF-α, iNOS, and IL-6 were significantly reduced in the LPS-stimulated macrophages co-treated with 20 ㎍/ml and 25 ㎍/ml of STR-E, respectively. In the case of IL-10, its peak mRNA level slightly increased without statistical significance. Compared with the LPS-stimulated macrophages, the peak mRNA levels of IL-1β, TNF-α, iNOS, and IL-6 reduced in the LPS-stimulated macrophages co-treated with 10 ㎍/ml and 20 ㎍/ml of STR-E-C, respectively. In contrast, the peak mRNA level of IL-10 significantly increased at 8 h. Compared with the LPS-stimulated macrophages, the peak mRNA levels of IL-1β, TNF-α, iNOS, and IL-6 reduced in the LPS-stimulated macrophages co-treated with 5 ㎍/ml and 10 ㎍/ml of STR-E-EA, respectively. In contrast, the peak mRNA level of IL-10 increased at 4 h. Taken together, our data indicated that STR-E, STR-E-C, and STR-E-EA activate macrophages to secrete both pro-inflammatory and anti-inflammatory cytokines.

  • PDF

Development of Functional Halogenated Phenylpyrrole Derivatives (기능성 할로겐화 페닐피롤 )

  • Min-Hee Jung;Hee Jeong Kong;Young-Ok Kim;Jin-Ho Lee
    • Journal of Life Science
    • /
    • v.33 no.10
    • /
    • pp.842-850
    • /
    • 2023
  • Pyrrolnitrin, pyrrolomycin, and pyoluteorin are functional halogenated phenylpyrrole derivatives (HPDs) derived from microorganisms with diverse antimicrobial activities. Pyrrolnitrin is a secondary metabolite produced from L-tryptophan through four-step reactions in Pseudomonas fluorescens, Burkholderia cepacia, Serratia plymuthica, etc. It is currently used for the treatment of superficial dermatophytic fungal infections, has high antagonistic activities against soil-borne and foliar fungal infections, and has many industrial applications. Since pyrrolnitrin is easily decomposed by light, it is difficult to widely use it outdoors. As an alternative, fludioxonil, a synthetically produced non-systemic surface fungicide that is structurally similar and has excellent light stability, has been commercialized for seed and foliar treatment of plants. However, due to its high toxicity to aquatic organisms and adverse effects in human cell lines, many countries have established maximum residue levels and strictly control its levels. Pyrrolomycin and pyoluteorin, which have antibiotic/antibiofilm activity against Gram-positive bacteria and high anti-oomycete activity against the plant pathogen Pythium ultimum, respectively, were isolated and identified from microorganisms. This review summarizes the biosynthesis and production of natural pyrrolnitrin derived from bacteria and the characteristics of synthetic fludioxonil and other natural phenylpyrrole derivatives among the HPDs. We expect that a plethora of highly effective, novel HPDs that are safe for humans and environments will be developed through the generation of an HPD library by microbial biosynthesis and chemical synthesis.