DOI QR코드

DOI QR Code

Nucleomodulin BspJ as an effector promotes the colonization of Brucella abortus in the host

  • Ma, Zhongchen (International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University) ;
  • Yu, Shuifa (International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University) ;
  • Cheng, Kejian (International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University) ;
  • Miao, Yuhe (Fujian Sunvet Biological Technology Co., Ltd) ;
  • Xu, Yimei (Xinjiang Center for Disease Control and Prevention) ;
  • Hu, Ruirui (College of Life Sciences, Shihezi University) ;
  • Zheng, Wei (International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University) ;
  • Yi, Jihai (International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University) ;
  • Zhang, Huan (International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University) ;
  • Li, Ruirui (International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University) ;
  • Li, Zhiqiang (College of Biology and Food, Shangqiu Normal University) ;
  • Wang, Yong (International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University) ;
  • Chen, Chuangfu (International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University)
  • Received : 2021.08.09
  • Accepted : 2021.10.04
  • Published : 2022.01.31

Abstract

Background: Brucella infection induces brucellosis, a zoonotic disease. The intracellular circulation process and virulence of Brucella mainly depend on its type IV secretion system (T4SS) expressing secretory effectors. Secreted protein BspJ is a nucleomodulin of Brucella that invades the host cell nucleus. BspJ mediates host energy synthesis and apoptosis through interaction with proteins. However, the mechanism of BspJ as it affects the intracellular survival of Brucella remains to be clarified. Objectives: To verify the functions of nucleomodulin BspJ in Brucella's intracellular infection cycles. Methods: Constructed Brucella abortus BspJ gene deletion strain (B. abortus ∆BspJ) and complement strain (B. abortus pBspJ) and studied their roles in the proliferation of Brucella both in vivo and in vitro. Results: BspJ gene deletion reduced the survival and intracellular proliferation of Brucella at the replicating Brucella-containing vacuoles (rBCV) stage. Compared with the parent strain, the colonization ability of the bacteria in mice was significantly reduced, causing less inflammatory infiltration and pathological damage. We also found that the knockout of BspJ altered the secretion of cytokines (interleukin [IL]-6, IL-1β, IL-10, tumor necrosis factor-α, interferon-γ) in host cells and in mice to affect the intracellular survival of Brucella. Conclusions: BspJ is extremely important for the circulatory proliferation of Brucella in the host, and it may be involved in a previously unknown mechanism of Brucella's intracellular survival.

Keywords

Acknowledgement

This research was supported by the National Natural Science Foundation of China (32060789, U1803236), Key Scientific Research Foundation of the Colleges and Universities of Henan Province (21A230015), and Key Development and Popularization Foundation of Henan Province (212102310746).

References

  1. Moreno E. Retrospective and prospective perspectives on zoonotic brucellosis. Front Microbiol. 2014;5:213. https://doi.org/10.3389/fmicb.2014.00213
  2. Goonaratna C. Brucellosis in humans and animals. Ceylon Med J. 2009;52(2):66.
  3. Atluri VL, Xavier MN, de Jong MF, den Hartigh AB, Tsolis RM. Interactions of the human pathogenic Brucella species with their hosts. Annu Rev Microbiol. 2011;65(1):523-541. https://doi.org/10.1146/annurev-micro-090110-102905
  4. Martirosyan A, Moreno E, Gorvel JP. An evolutionary strategy for a stealthy intracellular Brucella pathogen. Immunol Rev. 2011;240(1):211-234. https://doi.org/10.1111/j.1600-065X.2010.00982.x
  5. Godfroid J, Cloeckaert A, Liautard JP, Kohler S, Fretin D, Walravens K, et al. From the discovery of the Malta fever's agent to the discovery of a marine mammal reservoir, brucellosis has continuously been a re-emerging zoonosis. Vet Res. 2005;36(3):313-326. https://doi.org/10.1051/vetres:2005003
  6. Celli J. The changing nature of the Brucella-containing vacuole. Cell Microbiol. 2015;17(7):951-958. https://doi.org/10.1111/cmi.12452
  7. Comerci DJ, Martinez-Lorenzo MJ, Sieira R, Gorvel JP, Ugalde RA. Essential role of the VirB machinery in the maturation of the Brucella abortus-containing vacuole. Cell Microbiol. 2001;3(3):159-168. https://doi.org/10.1046/j.1462-5822.2001.00102.x
  8. Starr T, Child R, Wehrly TD, Hansen B, Hwang S, Lopez-Otin C, et al. Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle. Cell Host Microbe. 2012;11(1):33-45. https://doi.org/10.1016/j.chom.2011.12.002
  9. Celli J, de Chastellier C, Franchini DM, Pizarro-Cerda J, Moreno E, Gorvel JP. Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum. J Exp Med. 2003;198(4):545-556. https://doi.org/10.1084/jem.20030088
  10. Luizet JB, Raymond J, Lacerda TLS, Barbieux E, Kambarev S, Bonici M, et al. The Brucella effector BspL targets the ER-associated degradation (ERAD) pathway and delays bacterial egress from infected cells. Proc Natl Acad Sci U S A. 2021;118(32):e2105324118. https://doi.org/10.1073/pnas.2105324118
  11. Sieira R, Comerci DJ, Sanchez DO, Ugalde RA. A homologue of an operon required for DNA transfer in Agrobacterium is required in Brucella abortus for virulence and intracellular multiplication. J Bacteriol. 2000;182(17):4849-4855. https://doi.org/10.1128/JB.182.17.4849-4855.2000
  12. Delrue RM, Martinez-Lorenzo M, Lestrate P, Danese I, Bielarz V, Mertens P, et al. Identification of Brucella spp. genes involved in intracellular trafficking. Cell Microbiol. 2001;3(7):487-497. https://doi.org/10.1046/j.1462-5822.2001.00131.x
  13. O'Callaghan D, Cazevieille C, Allardet-Servent A, Boschiroli ML, Bourg G, Foulongne V, et al. A homologue of the Agrobacterium tumefaciens VirB and Bordetella pertussis Ptl type IV secretion systems is essential for intracellular survival of Brucella suis. Mol Microbiol. 1999;33(6):1210-1220. https://doi.org/10.1046/j.1365-2958.1999.01569.x
  14. Green ER, Mecsas J. Bacterial secretion systems-an overview. Microbiol Spectr. 2016;4(1):4.
  15. Juhas M, Crook DW, Hood DW. Type IV secretion systems: tools of bacterial horizontal gene transfer and virulence. Cell Microbiol. 2008;10(12):2377-2386. https://doi.org/10.1111/j.1462-5822.2008.01187.x
  16. Celli J. The intracellular life cycle of Brucella spp. Microbiol Spectr. 2019;7(2):7. https://doi.org/10.1128/microbiolspec.BAI-0006-2019
  17. de Jong MF, Sun YH, den Hartigh AB, van Dijl JM, Tsolis RM. Identification of VceA and VceC, two members of the VjbR regulon that are translocated into macrophages by the Brucella type IV secretion system. Mol Microbiol. 2008;70(6):1378-1396. https://doi.org/10.1111/j.1365-2958.2008.06487.x
  18. de Jong MF, Starr T, Winter MG, den Hartigh AB, Child R, Knodler LA, et al. Sensing of bacterial type IV secretion via the unfolded protein response. MBio. 2013;4(1):e00418-e12.
  19. Cirl C, Wieser A, Yadav M, Duerr S, Schubert S, Fischer H, et al. Subversion of Toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1 receptor domain-containing proteins. Nat Med. 2008;14(4):399-406. https://doi.org/10.1038/nm1734
  20. Radhakrishnan GK, Yu Q, Harms JS, Splitter GA. Brucella TIR domain-containing protein mimics properties of the Toll-like receptor adaptor protein TIRAP. J Biol Chem. 2009;284(15):9892-9898. https://doi.org/10.1074/jbc.M805458200
  21. Sengupta D, Koblansky A, Gaines J, Brown T, West AP, Zhang D, et al. Subversion of innate immune responses by Brucella through the targeted degradation of the TLR signaling adapter, MAL. J Immunol. 2010;184(2):956-964. https://doi.org/10.4049/jimmunol.0902008
  22. Chaudhary A, Ganguly K, Cabantous S, Waldo GS, Micheva-Viteva SN, Nag K, et al. The Brucella TIR-like protein TcpB interacts with the death domain of MyD88. Biochem Biophys Res Commun. 2012;417(1):299-304. https://doi.org/10.1016/j.bbrc.2011.11.104
  23. Alaidarous M, Ve T, Casey LW, Valkov E, Ericsson DJ, Ullah MO, et al. Mechanism of bacterial interference with TLR4 signaling by Brucella Toll/interleukin-1 receptor domain-containing protein TcpB. J Biol Chem. 2014;289(2):654-668. https://doi.org/10.1074/jbc.M113.523274
  24. Jakka P, Namani S, Murugan S, Rai N, Radhakrishnan G. The Brucella effector protein TcpB induces degradation of inflammatory caspases and thereby subverts non-canonical inflammasome activation in macrophages. J Biol Chem. 2017;292(50):20613-20627. https://doi.org/10.1074/jbc.M117.815878
  25. Salcedo SP, Marchesini MI, Lelouard H, Fugier E, Jolly G, Balor S, et al. Brucella control of dendritic cell maturation is dependent on the TIR-containing protein Btp1. PLoS Pathog. 2008;4(2):e21. https://doi.org/10.1371/journal.ppat.0040021
  26. Myeni S, Child R, Ng TW, Kupko JJ 3rd, Wehrly TD, Porcella SF, et al. Brucella modulates secretory trafficking via multiple type IV secretion effector proteins. PLoS Pathog. 2013;9(8):e1003556. https://doi.org/10.1371/journal.ppat.1003556
  27. Miller CN, Smith EP, Cundiff JA, Knodler LA, Blackburn JB, Lupashin V, et al. A Brucella type IV effector targets the COG tethering complex to remodel host secretory traffic and promote intracellular replication. Cell Host Microbe. 2017;22(3):317-329.e7. https://doi.org/10.1016/j.chom.2017.07.017
  28. Ma Z, Li R, Hu R, Deng X, Xu Y, Zheng W, et al. Brucella abortus BspJ is a nucleomodulin that inhibits macrophage apoptosis and promotes intracellular survival of Brucella. Front Microbiol. 2020;11:599205. https://doi.org/10.3389/fmicb.2020.599205
  29. Dorneles EM, Teixeira-Carvalho A, Araujo MS, Sriranganathan N, Lage AP. Immune response triggered by Brucella abortus following infection or vaccination. Vaccine. 2015;33(31):3659-3666. https://doi.org/10.1016/j.vaccine.2015.05.057
  30. Liu Q, Liu Q, Yi J, Liang K, Liu T, Roland KL, et al. Outer membrane vesicles derived from Salmonella Typhimurium mutants with truncated LPS induce cross-protective immune responses against infection of Salmonella enterica serovars in the mouse model. Int J Med Microbiol. 2016;306(8):697-706. https://doi.org/10.1016/j.ijmm.2016.08.004
  31. Hayek I, Berens C, Luhrmann A. Modulation of host cell metabolism by T4SS-encoding intracellular pathogens. Curr Opin Microbiol. 2019;47:59-65. https://doi.org/10.1016/j.mib.2018.11.010
  32. Ke Y, Wang Y, Li W, Chen Z. Type IV secretion system of Brucella spp. and its effectors. Front Cell Infect Microbiol. 2015;5:72. https://doi.org/10.3389/fcimb.2015.00072
  33. Smith E, Cotto-Rosario A, Borghesan E, Held K, Miller C, Celli J. Epistatic interplay between type IV secretion effectors engages the small GTPase Rab2 in the Brucella intracellular cycle. MBio. 2020;11(2):e03350-19.
  34. Borghesan E, Smith EP, Myeni S, Binder K, Knodler LA, Celli J. A Brucella effector modulates the Arf6-Rab8a GTPase cascade to promote intravacuolar replication. EMBO J. 2021;40(19):e107664.
  35. Rittig MG, Kaufmann A, Robins A, Shaw B, Sprenger H, Gemsa D, et al. Smooth and rough lipopolysaccharide phenotypes of Brucella induce different intracellular trafficking and cytokine/chemokine release in human monocytes. J Leukoc Biol. 2003;74(6):1045-1055. https://doi.org/10.1189/jlb.0103015
  36. Zaitseva M, King LR, Manischewitz J, Dougan M, Stevan L, Golding H, et al. Human peripheral blood T cells, monocytes, and macrophages secrete macrophage inflammatory proteins 1alpha and 1beta following stimulation with heat-inactivated Brucella abortus. Infect Immun. 2001;69(6):3817-3826. https://doi.org/10.1128/IAI.69.6.3817-3826.2001
  37. Skendros P, Pappas G, Boura P. Cell-mediated immunity in human brucellosis. Microbes Infect. 2011;13(2):134-142. https://doi.org/10.1016/j.micinf.2010.10.015
  38. Jaslow SL, Gibbs KD, Fricke WF, Wang L, Pittman KJ, Mammel MK, et al. Salmonella activation of STAT3 signaling by SarA effector promotes intracellular replication and production of IL-10. Cell Rep. 2018;23(12):3525-3536. https://doi.org/10.1016/j.celrep.2018.05.072
  39. Xiong D, Song L, Geng S, Jiao Y, Zhou X, Song H, et al. Salmonella coiled-coil-and TIR-containing TcpS evades the innate immune system and subdues inflammation. Cell Rep. 2018;23(12):3525-3536. https://doi.org/10.1016/j.celrep.2018.05.072
  40. Zheng M, Ambesi A, McKeown-Longo PJ. Role of TLR4 receptor complex in the regulation of the innate immune response by fibronectin. Cells. 2020;9(1):9. https://doi.org/10.3390/cells9010009
  41. Cyktor JC, Turner J. Interleukin-10 and immunity against prokaryotic and eukaryotic intracellular pathogens. Infect Immun. 2011;79(8):2964-2973. https://doi.org/10.1128/IAI.00047-11
  42. Ip WK, Hoshi N, Shouval DS, Snapper S, Medzhitov R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science. 2017;356(6337):513-519. https://doi.org/10.1126/science.aal3535