Browse > Article
http://dx.doi.org/10.4142/jvs.21224

Nucleomodulin BspJ as an effector promotes the colonization of Brucella abortus in the host  

Ma, Zhongchen (International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University)
Yu, Shuifa (International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University)
Cheng, Kejian (International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University)
Miao, Yuhe (Fujian Sunvet Biological Technology Co., Ltd)
Xu, Yimei (Xinjiang Center for Disease Control and Prevention)
Hu, Ruirui (College of Life Sciences, Shihezi University)
Zheng, Wei (International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University)
Yi, Jihai (International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University)
Zhang, Huan (International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University)
Li, Ruirui (International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University)
Li, Zhiqiang (College of Biology and Food, Shangqiu Normal University)
Wang, Yong (International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University)
Chen, Chuangfu (International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University)
Publication Information
Journal of Veterinary Science / v.23, no.1, 2022 , pp. 8.1-8.15 More about this Journal
Abstract
Background: Brucella infection induces brucellosis, a zoonotic disease. The intracellular circulation process and virulence of Brucella mainly depend on its type IV secretion system (T4SS) expressing secretory effectors. Secreted protein BspJ is a nucleomodulin of Brucella that invades the host cell nucleus. BspJ mediates host energy synthesis and apoptosis through interaction with proteins. However, the mechanism of BspJ as it affects the intracellular survival of Brucella remains to be clarified. Objectives: To verify the functions of nucleomodulin BspJ in Brucella's intracellular infection cycles. Methods: Constructed Brucella abortus BspJ gene deletion strain (B. abortus ∆BspJ) and complement strain (B. abortus pBspJ) and studied their roles in the proliferation of Brucella both in vivo and in vitro. Results: BspJ gene deletion reduced the survival and intracellular proliferation of Brucella at the replicating Brucella-containing vacuoles (rBCV) stage. Compared with the parent strain, the colonization ability of the bacteria in mice was significantly reduced, causing less inflammatory infiltration and pathological damage. We also found that the knockout of BspJ altered the secretion of cytokines (interleukin [IL]-6, IL-1β, IL-10, tumor necrosis factor-α, interferon-γ) in host cells and in mice to affect the intracellular survival of Brucella. Conclusions: BspJ is extremely important for the circulatory proliferation of Brucella in the host, and it may be involved in a previously unknown mechanism of Brucella's intracellular survival.
Keywords
Brucella abortus; secreted protein; intracellular survival; cytokines; clinical pathology;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Liu Q, Liu Q, Yi J, Liang K, Liu T, Roland KL, et al. Outer membrane vesicles derived from Salmonella Typhimurium mutants with truncated LPS induce cross-protective immune responses against infection of Salmonella enterica serovars in the mouse model. Int J Med Microbiol. 2016;306(8):697-706.   DOI
2 Comerci DJ, Martinez-Lorenzo MJ, Sieira R, Gorvel JP, Ugalde RA. Essential role of the VirB machinery in the maturation of the Brucella abortus-containing vacuole. Cell Microbiol. 2001;3(3):159-168.   DOI
3 Starr T, Child R, Wehrly TD, Hansen B, Hwang S, Lopez-Otin C, et al. Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle. Cell Host Microbe. 2012;11(1):33-45.   DOI
4 Celli J, de Chastellier C, Franchini DM, Pizarro-Cerda J, Moreno E, Gorvel JP. Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum. J Exp Med. 2003;198(4):545-556.   DOI
5 Sieira R, Comerci DJ, Sanchez DO, Ugalde RA. A homologue of an operon required for DNA transfer in Agrobacterium is required in Brucella abortus for virulence and intracellular multiplication. J Bacteriol. 2000;182(17):4849-4855.   DOI
6 Delrue RM, Martinez-Lorenzo M, Lestrate P, Danese I, Bielarz V, Mertens P, et al. Identification of Brucella spp. genes involved in intracellular trafficking. Cell Microbiol. 2001;3(7):487-497.   DOI
7 O'Callaghan D, Cazevieille C, Allardet-Servent A, Boschiroli ML, Bourg G, Foulongne V, et al. A homologue of the Agrobacterium tumefaciens VirB and Bordetella pertussis Ptl type IV secretion systems is essential for intracellular survival of Brucella suis. Mol Microbiol. 1999;33(6):1210-1220.   DOI
8 Green ER, Mecsas J. Bacterial secretion systems-an overview. Microbiol Spectr. 2016;4(1):4.
9 Myeni S, Child R, Ng TW, Kupko JJ 3rd, Wehrly TD, Porcella SF, et al. Brucella modulates secretory trafficking via multiple type IV secretion effector proteins. PLoS Pathog. 2013;9(8):e1003556.   DOI
10 Miller CN, Smith EP, Cundiff JA, Knodler LA, Blackburn JB, Lupashin V, et al. A Brucella type IV effector targets the COG tethering complex to remodel host secretory traffic and promote intracellular replication. Cell Host Microbe. 2017;22(3):317-329.e7.   DOI
11 Ma Z, Li R, Hu R, Deng X, Xu Y, Zheng W, et al. Brucella abortus BspJ is a nucleomodulin that inhibits macrophage apoptosis and promotes intracellular survival of Brucella. Front Microbiol. 2020;11:599205.   DOI
12 Dorneles EM, Teixeira-Carvalho A, Araujo MS, Sriranganathan N, Lage AP. Immune response triggered by Brucella abortus following infection or vaccination. Vaccine. 2015;33(31):3659-3666.   DOI
13 Hayek I, Berens C, Luhrmann A. Modulation of host cell metabolism by T4SS-encoding intracellular pathogens. Curr Opin Microbiol. 2019;47:59-65.   DOI
14 Ke Y, Wang Y, Li W, Chen Z. Type IV secretion system of Brucella spp. and its effectors. Front Cell Infect Microbiol. 2015;5:72.   DOI
15 Smith E, Cotto-Rosario A, Borghesan E, Held K, Miller C, Celli J. Epistatic interplay between type IV secretion effectors engages the small GTPase Rab2 in the Brucella intracellular cycle. MBio. 2020;11(2):e03350-19.
16 Jaslow SL, Gibbs KD, Fricke WF, Wang L, Pittman KJ, Mammel MK, et al. Salmonella activation of STAT3 signaling by SarA effector promotes intracellular replication and production of IL-10. Cell Rep. 2018;23(12):3525-3536.   DOI
17 Borghesan E, Smith EP, Myeni S, Binder K, Knodler LA, Celli J. A Brucella effector modulates the Arf6-Rab8a GTPase cascade to promote intravacuolar replication. EMBO J. 2021;40(19):e107664.
18 Rittig MG, Kaufmann A, Robins A, Shaw B, Sprenger H, Gemsa D, et al. Smooth and rough lipopolysaccharide phenotypes of Brucella induce different intracellular trafficking and cytokine/chemokine release in human monocytes. J Leukoc Biol. 2003;74(6):1045-1055.   DOI
19 Zaitseva M, King LR, Manischewitz J, Dougan M, Stevan L, Golding H, et al. Human peripheral blood T cells, monocytes, and macrophages secrete macrophage inflammatory proteins 1alpha and 1beta following stimulation with heat-inactivated Brucella abortus. Infect Immun. 2001;69(6):3817-3826.   DOI
20 Moreno E. Retrospective and prospective perspectives on zoonotic brucellosis. Front Microbiol. 2014;5:213.   DOI
21 Goonaratna C. Brucellosis in humans and animals. Ceylon Med J. 2009;52(2):66.
22 Atluri VL, Xavier MN, de Jong MF, den Hartigh AB, Tsolis RM. Interactions of the human pathogenic Brucella species with their hosts. Annu Rev Microbiol. 2011;65(1):523-541.   DOI
23 Cirl C, Wieser A, Yadav M, Duerr S, Schubert S, Fischer H, et al. Subversion of Toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1 receptor domain-containing proteins. Nat Med. 2008;14(4):399-406.   DOI
24 Martirosyan A, Moreno E, Gorvel JP. An evolutionary strategy for a stealthy intracellular Brucella pathogen. Immunol Rev. 2011;240(1):211-234.   DOI
25 de Jong MF, Sun YH, den Hartigh AB, van Dijl JM, Tsolis RM. Identification of VceA and VceC, two members of the VjbR regulon that are translocated into macrophages by the Brucella type IV secretion system. Mol Microbiol. 2008;70(6):1378-1396.   DOI
26 de Jong MF, Starr T, Winter MG, den Hartigh AB, Child R, Knodler LA, et al. Sensing of bacterial type IV secretion via the unfolded protein response. MBio. 2013;4(1):e00418-e12.
27 Celli J. The intracellular life cycle of Brucella spp. Microbiol Spectr. 2019;7(2):7.   DOI
28 Radhakrishnan GK, Yu Q, Harms JS, Splitter GA. Brucella TIR domain-containing protein mimics properties of the Toll-like receptor adaptor protein TIRAP. J Biol Chem. 2009;284(15):9892-9898.   DOI
29 Chaudhary A, Ganguly K, Cabantous S, Waldo GS, Micheva-Viteva SN, Nag K, et al. The Brucella TIR-like protein TcpB interacts with the death domain of MyD88. Biochem Biophys Res Commun. 2012;417(1):299-304.   DOI
30 Alaidarous M, Ve T, Casey LW, Valkov E, Ericsson DJ, Ullah MO, et al. Mechanism of bacterial interference with TLR4 signaling by Brucella Toll/interleukin-1 receptor domain-containing protein TcpB. J Biol Chem. 2014;289(2):654-668.   DOI
31 Jakka P, Namani S, Murugan S, Rai N, Radhakrishnan G. The Brucella effector protein TcpB induces degradation of inflammatory caspases and thereby subverts non-canonical inflammasome activation in macrophages. J Biol Chem. 2017;292(50):20613-20627.   DOI
32 Godfroid J, Cloeckaert A, Liautard JP, Kohler S, Fretin D, Walravens K, et al. From the discovery of the Malta fever's agent to the discovery of a marine mammal reservoir, brucellosis has continuously been a re-emerging zoonosis. Vet Res. 2005;36(3):313-326.   DOI
33 Luizet JB, Raymond J, Lacerda TLS, Barbieux E, Kambarev S, Bonici M, et al. The Brucella effector BspL targets the ER-associated degradation (ERAD) pathway and delays bacterial egress from infected cells. Proc Natl Acad Sci U S A. 2021;118(32):e2105324118.   DOI
34 Sengupta D, Koblansky A, Gaines J, Brown T, West AP, Zhang D, et al. Subversion of innate immune responses by Brucella through the targeted degradation of the TLR signaling adapter, MAL. J Immunol. 2010;184(2):956-964.   DOI
35 Xiong D, Song L, Geng S, Jiao Y, Zhou X, Song H, et al. Salmonella coiled-coil-and TIR-containing TcpS evades the innate immune system and subdues inflammation. Cell Rep. 2018;23(12):3525-3536.   DOI
36 Skendros P, Pappas G, Boura P. Cell-mediated immunity in human brucellosis. Microbes Infect. 2011;13(2):134-142.   DOI
37 Zheng M, Ambesi A, McKeown-Longo PJ. Role of TLR4 receptor complex in the regulation of the innate immune response by fibronectin. Cells. 2020;9(1):9.   DOI
38 Cyktor JC, Turner J. Interleukin-10 and immunity against prokaryotic and eukaryotic intracellular pathogens. Infect Immun. 2011;79(8):2964-2973.   DOI
39 Ip WK, Hoshi N, Shouval DS, Snapper S, Medzhitov R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science. 2017;356(6337):513-519.   DOI
40 Salcedo SP, Marchesini MI, Lelouard H, Fugier E, Jolly G, Balor S, et al. Brucella control of dendritic cell maturation is dependent on the TIR-containing protein Btp1. PLoS Pathog. 2008;4(2):e21.   DOI
41 Celli J. The changing nature of the Brucella-containing vacuole. Cell Microbiol. 2015;17(7):951-958.   DOI
42 Juhas M, Crook DW, Hood DW. Type IV secretion systems: tools of bacterial horizontal gene transfer and virulence. Cell Microbiol. 2008;10(12):2377-2386.   DOI