• Title/Summary/Keyword: cell bank

Search Result 200, Processing Time 0.026 seconds

Clinico-Hematological Findings for Classical Hodgkin's Lymphoma: an Institutional Experience

  • Sultan, Sadia;Irfan, Syed Mohammed;Parveen, Saira;Ali, Saif
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.8
    • /
    • pp.4009-4011
    • /
    • 2016
  • Background: Classical Hodgkin's lymphoma (cHL) is a B-cell lymphoid neoplasm characterized by a distinctive biological behavior with potentially curable disease characteristics. It is an uncommon hematological malignancy which primarily affects younger individuals. The rationale of this study was to determine its clinico-hematological profile along with stage stratification in Pakistani patients. Materials and Methods: In this descriptive study, adult patients with Hodgkin's lymphoma were enrolled from January 2010 to December 2014. Results: Sixty two histopathologically confirmed cases of cHL were identified. There were 42 males and 20 females, with a male to female ratio of 2: 1. The mean age was $29.7{\pm}13.8$ years with the median age of 30 years. B symptoms were present in 72.5% of patients. Histopathologically, the mixed cellularity type constituted 62.9% of cases, followed by nodular sclerosis in 25.8%, lymphocyte predominant in 9.6% and lymphocyte depleted in 1.6%. Stages I and II were present in 43.5% of patients at disease presentation, with 56.4% in stages III and IV. Conclusions: Our analysis shows that clinico-pathological features of Hodgkin's lymphoma in Pakistan are comparable to published data. Mixed cellularity is the commonest histological variant and advanced stage at presentation are common findings in our patients.

Acute Myeloid Leukemia: Clinical Spectrum of 125 Patients

  • Sultan, Sadia;Zaheer, Hasan Abbas;Irfan, Syed Mohammed;Ashar, Sana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.1
    • /
    • pp.369-372
    • /
    • 2016
  • Background: Acute myeloid leukemia is an acquired clonal heterogeneous stem cell disorder. Hence, various parameters are sought out to categorize this disease into subtypes, so that as a consequence specific treatment modalities can be offered. Conventionally, the practically used method for classification utilizes French American British (FAB) criteria based on morphology and cytochemistry. The aim of present study was to determine the current spectrum of AML sub types in patients in Karachi. Materials and Methods: This single centre cross sectional study was conducted at Liaquat National Hospital, Karachi, extending from January 2010 to December 2014. Data were retrieved from archives were analyzed with SPSS version 22. Results: A total of 125 patients were diagnosed at our institution with de novo AML during five years period, 76 males and 49 females. Median age was 34.5 years. AML-M1 was the predominant FAB subtype (23.2%) followed by M2 (18.4%), M3 and M4 (16% each), M0 (14.4%), M5 (7.2%), M6 (3.2%) and M7 (1.6%). Conclusions: AML in Pakistani patients is seen in a relatively young population. The most common FAB subtype observed in our study was acute myeloblastic leukemia, without maturation (M1).

The Design of Intelligent Human Cell Management System with RFID (RFID와 연계한 인체자원관리 시스템 설계)

  • Kim, Ki-Bong
    • Journal of Digital Convergence
    • /
    • v.11 no.3
    • /
    • pp.311-316
    • /
    • 2013
  • In order to maximize an efficient management of human cell resource under the cryogenic environments, in this paper, a middleware is introduced to support the function for multiple-perceiving RFID tags of intelligent sample case which can share medical information between sensor network devices. Optimized user interface is also designed for that. On based of the designing, special tasks required of a genetic resource working process can be processed on Complex Machine.

Factors to Predict Successful Harvest during Autologous Peripheral Hematopoietic Stem Cell Collection

  • Kim, Mun-Ja;Jin, Soo-He;Lee, Duk-Hee;Park, Dae-Weon;Koh, Sung-Ae;Lee, Kyung-Hee;Hyun, Myung-Soo;Kim, Min-Kyoung
    • Biomedical Science Letters
    • /
    • v.18 no.2
    • /
    • pp.131-138
    • /
    • 2012
  • Autologous peripheral blood stem cell transplantation (PBSCT) has been used as a major treatment strategy for hematological malignancies. The number of CD34 positive cells in the harvested product is a very important factor for achieving successful transplantation. We studied the factors that can predict the number of CD34 positive cells in the harvested product of acute myelocytic leukemia (AML), multiple myeloma (MM) and Non-Hodgkin's lymphoma (NHL) patients after mobilizing them with chemotherapy plus G-CSF. A total of 73 patients (AML 19 patients, MM 28 patients, NHL 26 patients) with hematological malignancies had been mobilized with chemotherapy and granulocyte colony-stimulating growth factor from April, 2000 to February, 2012. Group's characteristics, checkup opinion of pre-peripheral blood on the day of harvest & outcome of PBSC were analyzed and evaluated using SPSS statistics program after grouping patients as below; group 1: CD34 cell counts < $2{\times}10^6/kg$ (n=16); group 2: $2{\times}10^6/kg{\leq}CD34$ cell counts < $6{\times}10^6/kg$ (n=32); group 3: CD34 cell counts ${\geq}6{\times}10^6/kg$ (n=25). We analyzed the clinical characteristics, the peripheral blood (PB) parameters and the number of CD34 positive cells in the PB and their correlation with the yield of CD34 positive cells collected from the mobilized patients. The total number of leukapheresis sessions was 263 (mean: 3.55 session per patient), and the mean number of harvested CD34 positive cells per patient was $7.37{\times}10^6/kg$. The number of CD34 positive cells in product was significantly correlated with the number of platelet and CD34 positive cells in peripheral blood (P<0.05). The number of PB CD34 positive cells was the best significant factor for the quantity of harvested CD34 positive cells on the linear regression analysis (P<0.05). Many factors could influence the mobilization of peripheral blood stem cells. Platelet count and PB CD34 positive cells count were the two variables which remained to be significant in multivariate analysis. Therefore, the number of platelet and CD34 positive cells in peripheral blood on the day of harvest can be used as an accurate predictor for successful peripheral blood stem cell collection.

Suppression Subtractive Hybridization Identifies Novel Transcripts in Regenerating Hydra littoralis

  • Stout, Thomas;McFarland, Trevor;Appukuttan, Binoy
    • BMB Reports
    • /
    • v.40 no.2
    • /
    • pp.286-289
    • /
    • 2007
  • Despite considerable interest in the biologic processes of regeneration and stem cell activation, little is known about the genes involved in these transformative events. In a Hydra littoralis model of regeneration, we employed a rapid shotgun suppression subtractive hybridization strategy to identify genes that are uniquely expressed in regenerating tissue. With an adaptor-PCR based technique, 16 candidate transcripts were identified, 15 were confirmed unique to mRNA isolated from hydra undergoing regeneration. Of these, 6 were undescribed in GenBank and allied expressed sequence tag (EST) databases (GenBank + EMBL + DDBJ + PDB and the Hydra EST database). BLAST analysis of these sequences identified remarkably similar sequences in anonymous ESTs found in a wide variety of animal species.

Eriodictyol induces apoptosis via regulating phosphorylation of JNK, ERK, and FAK/AKT in pancreatic cancer cells

  • Oh, Ui Hyeon;Kim, Da-Hye;Lee, Jungwhoi;Han, Song-I;Kim, Jae-Hoon
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.2
    • /
    • pp.83-88
    • /
    • 2022
  • Although it has been intensively studied over the past few decades, pancreatic cancer remains one of the most lethal cancers. Eriodictyol, a plant-derived flavonoid mainly found in citrus fruits, exerts diverse biological effects, including anti-oxidant, anti-cancer, and anti-inflammatory properties. In this study, we investigated the anticancer properties of eriodictyol and its mechanisms of action in pancreatic cancer cells. In both SNU213 and Panc-1 cells, eriodictyol decreased viability, induced apoptosis, and decreased clonogenicity. In addition, eriodictyol treatment increased the phosphorylation level of JNK and decreased the phosphorylation levels of ERK, FAK, and AKT. These observations provide insight into the molecular mechanisms of eriodictyol-induced apoptosis in pancreatic cancer cell lines, and could contribute to the development of candidate compounds for treating pancreatic cancer.

The Use of Stem Cells as Medical Therapy (줄기세포를 이용한 세포치료법)

  • Son Eun-Hwa;Pyo Suhkneung
    • KSBB Journal
    • /
    • v.20 no.1 s.90
    • /
    • pp.1-11
    • /
    • 2005
  • Recently, there has been extremely active in the research of stem cell biology. Stem cells have excellent potential for being the ultimate source of transplantable cells for many different tissues. Researchers hope to use stem cells to repair or replace diseased or damaged organs, leading to new treatments for human disorders that are currently incurable, including diabetes, spinal cord injury and brain diseases. There are primary sources of stem cells like embryonic stem cells and adult stem cells. Stem cells from embryos were known to give rise to every type of cell. However, embryonic stem cells still have a lot of disadvantages. First, transplanted cells sometimes grow into tumors. Second, the human embryonic stem cells that are available for research would be rejected by a patient's immune system. Tissue-matched transplants could be made by either creating a bank of stem cells from more human embryos, or by cloning a patient's DNA into existing stem cells to customize them. However, this is laborious and ethically contentious. These problems could be overcome by using adult stem cells, taken from a patient, that are treated to remove problems and then put back. Nevertheless, some researchers do not convince that adult stem cells could, like embryonic ones, make every tissue type. Human stem cell research holds enormous potential for contributing to our understanding of fundamental human biology. In this review, we discuss the recent progress in stem cell research and the future therapeutic applications.

Analysis of Battery Performance Test for DC Power System in Nuclear Power Plant (원자력발전소 직류전원계통용 축전지 성능시험 분석)

  • Kim, Daesik;Cha, Hanju
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.2
    • /
    • pp.61-68
    • /
    • 2014
  • Function of battery bank stores energy for DC load in general, and DC power system of the nuclear power plant is used to supply DC loads for safety- featured instrumentation and control such as inverter, class 1E power system control and indication, and station annunciation. Class 1E DC power system must provide a power for the design basis accident conditions, and adequate capacity must be available during loss of AC power and subsequent safe shutdown of the plant. In present, batteries of Class 1E DC power system of the nuclear power plant uses lead-acid batteries. Class 1E batteries of nuclear power plants in Korea are summarized in terms of specification, such as capacity, discharge rate, bank configuration and discharge end voltage, etc. This paper summarizes standards of determining battery size for the nuclear power plant, and analyzes duty cycle for the class 1E DC power system of nuclear power plant. Then, battery cell size is calculated as 2613Ah according to the standard. In addition, this paper analyzes performance test results during past 13 years and shows performance degradation in the battery bank. Performance tests in 2001 and 2005 represent that entire battery cells do not reach the discharge-end voltage. Howeyer, the discharge-end voltage is reached in 14.7% of channel A (17 EA), 13.8% of channel B (16 EA), 5.2% of channel C (6 EA) and 16.4% of channel D (19 EA) at 2011 performance test. Based on the performance test results analysis and size calculation, battery capacity and degradation by age in Korearn nuclear power plant is discussed and would be used for new design.

Multiple Model Adaptive Estimation of the SOC of Li-ion battery for HEV/EV (다중모델추정기법을 이용한 HEV/EV용 리튬이온전지의 잔존충전용량 추정)

  • Jung, Hae-Bong;Kim, Young-Chol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.142-149
    • /
    • 2011
  • This paper presents a new state of charge(SOC) estimation of large capacity of Li-ion battery (LIB) based on the multiple model adaptive estimation(MMAE) method. We first introduce an equivalent circuit model of LIB. The relationship between the terminal voltage and the open circuit voltage(OCV) is nonlinear and may vary depending on the changes of temperature and C-rate. In this paper, such behaviors are described as a set of multiple linear time invariant impedance models. Each model is identified at a temperature and a C-rate. These model set must be obtained a priori for a given LIB. It is shown that most of impedances can be modeled by first-order and second-order transfer functions. For the real time estimation, we transform the continuous time models into difference equations. Subsequently, we construct the model banks in the manner that each bank consists of four adjacent models. When an operating point of cell temperature and current is given, the corresponding model bank is directly determined so that it is included in the interval generated by four operating points of the model bank. The MMAE of SOC at an arbitrary operating point (T $^{\circ}C$, $I_{bat}$[A]) is performed by calculating a linear combination of voltage drops, which are obtained by four models of the selected model bank. The demonstration of the proposed method is shown through simulations using DUALFOIL.

A Study on the Proper Number of Banks of Parallel Operation of Transformer in Large-scale Power Plants Using the High Temperature Fuel Cell Considering the Internal Failure (내부고장을 고려한 고온형 연료전지 대규모 발전단지의 병렬운전 변압기 적정 뱅크수에 관한 연구)

  • Chong, Young-Whan;Chai, Hui-Seok;Sung, In-Je;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.3
    • /
    • pp.26-31
    • /
    • 2014
  • High temperature fuel cell system, such as molten carbonate fuel cells(MCFC) and solid oxide fuel cells(SOFC), are capable of operating at MW rated power output. The power output change of high temperature fuel cell imposes the thermal and mechanical stresses on the fuel cell stack. To minimize the thermal-mechanical stresses on the stack and increase the systems reliability, we should divide the power plant configuration to several banks. However, the improvement of reliability in fuel cell power plant system causes an increase of the investment cost, for example, replacement costs, labor costs, and so on. For this reason - the balance between investment and reliability improvement - many studies about the appropriate level of investment have been conducted. In this paper, we evaluate the cost for operation and installation, the benefit for electric energy and thermal energy sales, and the system reliability for several cases : these cases relate with the bank configuration.