• Title/Summary/Keyword: cell adhesive protein

Search Result 19, Processing Time 0.023 seconds

Interaction of Bone Marrow Stromal Stem Cells with Adhesive Protein and Polypeptide-adsorbed Poly(lactide-co-glycolide) Scaffolds (골수유래 간엽줄기세포와 점착성 단백질 및 폴리펩타이드가 흡착된(락티이드/글리콜라이드) 공중합체 지지체와의 상호작용)

  • Choi, Jin-San;Lee, Sang-Jin;Jang, Ji-Wook;Khang, Gil-Son;Lee, Young-Moo;Lee, Bong;Lee, Hai-Bang
    • Polymer(Korea)
    • /
    • v.27 no.5
    • /
    • pp.397-404
    • /
    • 2003
  • The interaction of cell adhesive protein and polypeptide with bone marrow stromal stem cells (BMSCs) grown in tissue engineered films and scaffolds were examined. Several proteins or polypeptide known as cell-adhesive were coated adsorption on poly(lactide-co-glycolide) (PLGA) films and scaffolds and adhesion and proliferation behavior of BMSC on those surfaces were compared. The protein and polypeptide used include collagen IV, fibrinogen, laminin, gelatin, fibronectin, and poly(L-lysine). The protein and polypeptide were adsorbed on the PLGA film surfaces with almost monolayer coverage except poly(L-lysine). BMSCs were cultured for 1, 2, and 4 days on the protein- or polypeptide-adsorbed PLGA films and scaffolds. The cell adhesion and proliferation behaviors were assessed by sulforho damine B assay. It was observed that the protein- or polypeptide-adsorbed surfaces showed better cell adhesion and proliferation than the control.

Interaction of Schwann Cells with Various Protein- or Polypeptide-Coated PLGA Surfaces (다양한 단백질과 폴리펩타이드로 코팅된 PLGA 표면과 슈반세포와의 상호관계)

  • Park Ki-Suk;Kim Su-Mi;Kim Moon-Suk;Lee Il-Woo;Rhee John-M.;Lee Hai-Bang;Khang Gil-Son
    • Polymer(Korea)
    • /
    • v.30 no.5
    • /
    • pp.445-452
    • /
    • 2006
  • In this study, we investigated interaction of Schwann cells (SCs) with various cell-adhesive coated polymer surface. We used cell-adhesives that like a fibronectin (FN), fibrinogen(FG), laminin(LM), vitronectin (VN), poly-D-Iysine (PDL), and poly-L-Iysine (PLL) to coat PLGA film surface and evaluated the surface property of coated or not PLGA films by measurement of water contact angle and ESCA. SCs were cultured on coated or non-coated PLGA film surface, and then examined the cell adhesion and proliferation by cell count and SEM observation. Cell count results revealed initial cell adhesion related to protein adsorption on PLGA surface. In addition, serum content in media related to cell proliferation rate. In this result, we recognized that adhesion and proliferation of SCs were affected by specific cell-adhesives. In these results, we recognized that is important to provide the suitable surface environment according to cell types and culture condition for improvement of cell adhesion and proliferation.

A PROMISING NEW ANTI-WRINKLE INGREDIENT: Pericarpium castaneae extracts

  • Kim, Beom-Jun;Jo, Byoung-Kee;Kim, Jeong-Ha
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.25 no.4 s.34
    • /
    • pp.57-63
    • /
    • 1999
  • Pericarpium castaneae extracts have variously potent activities, such as anti-oxidative activity and free radical scavenging activity. in vivo and in vitro studies both indicate that pericarpium castaneae extracts acts as a free radical scavenger($IC_{50}:7.6{\mu}g/ml$) stronger than gallic acid($IC_{50}:12.5{\mu}g/ml$) and ellagic acid($IC_{50}:15{\mu}g/ml$) which could prevent cutaneous UV damages and skin aging. The extracts showed a good effect as a anti-oxidant($IC_{50}:50{\mu}g/ml$). It was shown that the appearance of wrinkle in human skin was reduced by topical application of pericarpium castaneae extracts. And the treatment of human skin with the extracts increased the elasticity and moisture of the skin. We investigated the effect of the pericarpium castaneae extracts on production of extracellular matrix using cultured A431 fibroblast cells. The results indicated that the extracts had no detectable effect on collagen synthesis. But synthesis of cell adhesion protein was increased by the extracts. The results suggest that increase of cell adhesion protein synthesis by pericarpium castaneae extracts has closely related to reduction of wrinkle in skin.

  • PDF

A PROMISING NEW ANTI-WRINKLE INGREDIENT : Pericarpium castaneae extracts

  • Kim, Beom-Jun;Jo, Byoung-Kee;Kim, Jeong-Ha
    • Proceedings of the SCSK Conference
    • /
    • 1999.10a
    • /
    • pp.57-64
    • /
    • 1999
  • Pericarpium castaneae extracts have variously potent activities, such as anti-oxidative activity and free radical scavenging activity. in vivo and in vivo studies both indicate that pericarpium castaneae extracts acts as a flee radical scavenger ($IC_{50}$/: 7.6$\mu\textrm{g}$/ml) stronger than gallic acid($IC_{50}$/: 12.5$\mu\textrm{g}$/ml) and ellagic acid($IC_{50}$/: 15$\mu\textrm{g}$/ml) which could prevent cutaneous UV damages and skin aging. The extracts showed a good effect as a anti-oxidant ($IC_{50}$/: 50$\mu\textrm{g}$/ml). It was shown that the appearance of wrinkle in human skin was reduced by topical application of pericarpium castaneae extracts. And the treatment of human skin with the extracts increased the elasticity and moisture of the skin. We investigated the effect of tile pericarpium castaneae extracts on production of extracellular matrix using cultured A431 fibroblast cells. The results indicated that the extracts had no detectable effect on collagen synthesis, But synthesis of cell adhesion protein was increased by the extracts. The results suggest that increase of cell adhesion protein synthesis by pericarpium castaneae extracts has closely related to reduction of wrinkle in skin.

  • PDF

Fabrication of a Superhydrophobic Surface with Adjustable Hydrophobicity and Adhesivity Based on a Silica Nanotube Array

  • Yu, Jae-Eun;Son, Sang-Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3378-3382
    • /
    • 2012
  • A superhydrophobic surface with a water contact angle > $150^{\circ}$ has attracted great interest from both fundamental and practical aspects. In this study, we demonstrated that hydrophobicity of a silica nanotube (SNT) array can be easily controlled by the SNT aspect ratio. In addition, the adhesive and anti-adhesive properties were controlled without modifying the hydrophobic surface. Various silica structures on a polydimethylsiloxane substrate were prepared using the desired alumina template. Bundle-arrayed and bowl-arrayed silica surfaces exhibited extraordinary superhydrophobicity due to the large frontal surface area and hierarchical micro/nanostructure. As the strategy used in this study is biocompatible and a wide range of hydrophobicities are capable of being controlled by the SNT aspect ratio, a hydrophobic surface composed of an SNT array could be an attractive candidate for bioapplications, such as cell and protein chips.

Cell-compatibility of physicochemically and biologically modified polymer surfaces (물리화학적 및 생물학적으로 표면개질된 고분자의 세포 적합성 연구)

  • Lee, J.H.;Park, K.H.;Khang, G.S.;Lee, H.B.;Andrade, J.D.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1989 no.05
    • /
    • pp.1-3
    • /
    • 1989
  • We have treated polymer surfaces such as polyethylene, polystyrene and polyester by various physicochemical and biological surface modification methods to be suitable for cell adhesion. The physicochemical methods we used were $O_2$ plasma discharge, corona discharge, sulfuric acid and chloric acid treatments. For the biological treatments, blood proteins such as plasma protein, serum protein and fibronectin were adsorbed onto the polymer surfaces. Chinese Hamster Ovary (CHO) cells were cultured on the surface-modified polymers and the cell-compatibility of those surfaces were compared. The chloric acid and fibronectin treatments were found to be the best methods of rendering the polymer surfaces adhesive for CHO cells.

  • PDF

A Study on the Adherence of Oral Streptococci to Saliva- or Protein-Coated Hydroxyapatite Beads (타액 및 단백 도말한 Hydroxyapatite 비드에 구강 Streptococci의 부착에 관한 연구)

  • 최선진
    • Korean Journal of Microbiology
    • /
    • v.27 no.3
    • /
    • pp.259-264
    • /
    • 1989
  • The adherence of $^{3}H$-labeled oral streptococcal cells to protein-coated hydroxyapatite (HA) beads was studied by a standard adherence assay. The adherence equilibrium for S. mutans 10449 occured in about 2 hrs. The cell numbers adhering to SHA was 50% less than those on bare HA. Sailva from different subjects had varying effect on bacterial adherence. The use of saliva adsorbed with homologouis bacteria decreased S. mutans adherence by 38% ; this indicates the presence of salivary agglutinin in acquired pellicle formed on HA. Animal sera and BSA decreased S. sanguis adherence. BSA concentration as high as 10mg/ml caused up to 87% adherence inhibition. The desorption experiment of adhered bacteria confirmed the previous reports that the adhesive sites on HA beads for S. mutans were different from those for S. sanguis and that S. mutans could enhance the adherence of S. sanguis but not vice versa.

  • PDF

Adhesive Properties, Extracellular Protein Production, and Metabolism in the Lactobacillus rhamnosus GG Strain when Grown in the Presence of Mucin

  • Sanchez, Borja;Saad, Naima;Schmitter, Jean-Marie;Bressollier, Philippe;Urdaci, Maria C.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.6
    • /
    • pp.978-984
    • /
    • 2010
  • This paper examines the probiotic bacterium Lactobacillus rhamnosus GG, and how it reacts to the presence of mucin in its extracellular milieu. Parameters studied included cell clustering, adhesion to mucin, extracellular protein production, and formation of final metabolites. L. rhamnosus GG was found to grow efficiently in the presence of glucose, N-acetylglucosamine, or mucin (partially purified or purified) as sole carbon sources. However, it was unable to grow using other mucin constituents, such as fucose or glucuronic acid. Mucin induced noticeable changes in all the parameters studied when compared with growth using glucose, including in the formation of cell clusters, which were easily disorganized with trypsin. Mucin increased adhesion of the bacterium, and modulated the production of extracellular proteins. SDS-PAGE revealed that mucin was not degraded during L. rhamnosus GG growth, suggesting that this bacterium is able to partially use the glucidic moiety of glycoprotein. This study goes some way towards developing an understanding of the metabolic and physiological changes that L. rhamnosus GG undergoes within the human gastrointestinal tract.

Expression of Ajuba, a Novel LIM Protein, is Regulated by Endorlasmic Reticulum Stress (소포체 스트레스가 Ajuba 발현유도)

  • Park, Sang-Mi;Kwon, Ki-Sang;Yun, Eun-Young;Goo, Tae-Won;Kwon, O-Yu
    • Journal of Life Science
    • /
    • v.17 no.7 s.87
    • /
    • pp.1023-1025
    • /
    • 2007
  • Ajuba is a number of proteins containing cytosolic LIM domain. Its function may provide a new pathway whereby cell-cell adhesive events are transmitted to the nucleus to regulate cell proliferation and differentiation decisions. Here, Ajuba gene expression was investigated its molecular properties associated with endoplasmic reticulum (ER) stresses (tunicamycin, DTT, A23187 and BFA) which induced remarkable ex-pression of Ajuba mRNA. The mRNA half life of Ajuba was also determined, its half life of Ajuba mRNA in FRTL-5 cells was approximately 2 hr after the initial translation. Although the obvious bioligical function of Ajuba is not clear, on the base of the results, Ajuba gene expression is deeply associated with ER stresses.

Cytoprotective Effects of Sulfuretin from Rhus verniciflua through Regulating of Heme Oxygenase-1 in Human Dental Pulp Cells

  • Lee, Dong-Sung;Kim, Kyoung-Su;Ko, Wonmin;Keo, Samell;Jeong, Gil-Saeng;Oh, Hyuncheol;Kim, Youn-Chul
    • Natural Product Sciences
    • /
    • v.19 no.1
    • /
    • pp.54-60
    • /
    • 2013
  • Rhus verniciflua Stokes (Anacadiaceae) is a plant that is native to East Asian countries, such as Korea, China, and Japan, and it has been found to exert various biological activities including antioxidative, anti-aggregatory, anti-inflammatory, anti-mutagenic, and apoptotic effects. Sulfuretin is one of the major flavonoid component isolated from the heartwood of R. verniciflua. Reactive oxygen species (ROS), produced via dental adhesive bleaching agents and pulpal disease, can cause oxidative stress. In the present study, we isolated sulfuretin from R. verniciflua and demonstrated that sulfuretin possesses cytoprotective effects against hydrogen peroxide ($H_2O_2$)-induced dental cell death. $H_2O_2$ is a representative ROS and causes cell death through necrosis in human dental pulp (HDP) cells. $H_2O_2$-induced cytotoxicity and production of ROS were blocked in the presence of sulfuretin, and these effects were dose dependent. Sulfuretin also increased heme oxygenase-1 (HO-1) protein expression. In addition, to determine whether sulfuretin-induced HO-1 expression mediated this cytoprotective effect, HDP cells were cotreated with sulfuretin in the absence or presence of SnPP, an inhibitor of HO activity. Sulfuretin-dependent HO-1 expression was required for suppression of $H_2O_2$-induced HDP cell death and ROS generation. These results indicate that sulfuretin-dependent HO-1 expression was required for the inhibition of $H_2O_2$-induced cell death and ROS generation. In addition, sulfuretin may be used to prevent functional dental cell death and thus may be useful as a pulpal disease agent.