• Title/Summary/Keyword: cavitation inception

Search Result 54, Processing Time 0.019 seconds

Effect of Reynolds Number, Leading Edge Roughness and Air Content on the Cavitation Performance of Model Propellers (Reynolds수, 표면거칠기 및 공기함유량이 모형프로펠러 캐비테이션 성능에 미치는 영향)

  • Ki-Sup Kim;Kyung-Yeul Kim;Jong-Woo Ahn;Jin-Tae Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.1
    • /
    • pp.10-25
    • /
    • 2000
  • The effects of Reynolds number of model propeller leading edge roughness and air content resolved in tunnel water on cavitation inception, cavitation extent and pressure fluctuation were investigated experimentally by using two model propellers in a cavitation tunnel. Cavitation observation and propeller induced fluctuating pressure measured in the present model test were compared with the model test results of other research institutes and the full-scale data of a German container ship(Sydney Express). The comparison shows a reasonable agreement.

  • PDF

Performance prediction of horizontal axis marine current turbines

  • Bal, Sakir;Atlar, Mehmet;Usar, Deniz
    • Ocean Systems Engineering
    • /
    • v.5 no.2
    • /
    • pp.125-138
    • /
    • 2015
  • In this study, hydrodynamic performance of a 400 mm diameter horizontal axis marine current turbine model was tested in a cavitation tunnel with 1.21 m x 0.8 m cross-section for over a range of tip speed ratios. Torque and thrust data, as well as cavitation visualizations, for certain operating conditions were acquired. Experimental results indicated that the turbine can be exposed to significant amount of sheet and cloud cavitation over the blades along with vortex cavitation at the blade tips. Inception and distribution of cavitation along the blades of the model turbine were then modelled numerically for design operating conditions using a vortex lattice method. The method was also applied to a turbine tested previously and obtained results were compared with the data available. The comparison between simulation results and experimental data showed a slight difference in terms of span-wise extent of the cavitation region. The cloud and tip vortex cavity observed in experiments cannot be modelled due to the fact that the VLM lacks the ability to predict such types of cavitation. Notwithstanding, the use of such prediction methods can provide a reasonably accurate approach to estimate, therefore take the hydrodynamic effects of cavitation into account in design and analysis of marine current turbines.

Two-dimensional Model Tests for Rudder Gap Cavitation and Suppression Devices (타 간극 캐비테이션과 저감장치에 관한 2 차원 모형 실험)

  • Lee, Chang-Min;Oh, Jung-Keun;Rhee, Shin-Hyung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.122-131
    • /
    • 2010
  • The increasing size and speed of cargo ships result in high speed flow in propeller slipstream, and thereby cavitation is frequently observed on and around a rudder system. Rudder gap cavitation is the most difficult one to control and suppress among various types of the cavitation on a rudder system. In the present study, experiments of the incipient cavitation and pressure measurement were carried out for typical cargo ship rudder sections with and without the suppression devices, which were suggested by the authors. Fundamental understanding of the rudder gap cavitation inception was obtained along with its relevance to the surface pressure distribution. It is confirmed that the gap flow blocking devices effectively suppress the rudder gap cavitation and, at the same time, augment lift.

Cavitation Noise Detection Method using Continuous Wavelet Transform and DEMON Signal Processing (연속 웨이브렛 변환 및 데몬 신호처리를 이용한 캐비테이션 소음 검출 방법)

  • Lee, Hee-chang;Kim, Tae-hyeong;Sohn, Kwon;Lee, Phil-ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.505-513
    • /
    • 2017
  • Cavitation is a phenomenon caused by vapour cavities that is produced in rapid pressure changes. When the cavitation happened, the sound pressure level of a underwater radiated noise is increased rapidly. As a result, it can increase the probability of the identification or classification of a our warship's acoustic signature by an enemy ship. However, there is a problem that it is hard to precisely detect the occurrence of a cavitation noise. Therefore, this paper presents recent improvements in terms of the cavitation noise measurement by using continuous wavelet transform and DEMON(Detection of Envelope Modulation on Noise) signal processing. Then, we present that the suggested scheme is more suitable for detecting the cavitation than existing algorithms.

Experimental study on the discharge coefficients and cavitation of conical orifices (원추형 오리피스의 유출계수와 캐비테이션에 관한 실험적 연구)

  • Kim, Byeong-Chan;Yun, Byeong-Ok;Park, Bok-Chun;Jo, Nam-O;Ji, Dae-seong;Jeong, Baek-Sun;Park, Gyeong-Am
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1371-1379
    • /
    • 1997
  • The high pressure drop is frequently required in the by-pass line of the pump or of the heat exchanger in power plants. However, cavitation produced by a high pressure drop could damage the pipe and pump blades. Conical orifices are adopted to reduce cavitation due to high pressure drop. The discharge coefficients of conical orifice plates were measured by weighing method in the standard water flow system. The discharge coefficients were larger when the ratios of thickness of orifice edge to throat diameter were larger. The noise generated from a conical orifice due to cavitation was measured with a sound level meter and a hydrophone. With increasing the bore diameter of the orifice, the sound pressure level or the noise level due to cavitation became higher. The noise level was suddenly increased at the inception of cavitation.

Measurement of Cavitation Noise of a Hydrofoil and Prediction of Cavity Bubble Behavior (수중익의 캐비테이션 소음 계측 및 캐비티 기포 거동 해석)

  • Jong-Woo Ahn;Kwan-Hyoung Kang;In-Haeng Song;Kyung-Youl Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.4
    • /
    • pp.40-47
    • /
    • 2000
  • The cavitation noise of a hydrofoil is measured in a cavitation tunnel. It is exhibited that the noise level sharply increases with the inception of cavitation and increase with the decrease of the cavitation number until a moderate cavitation number. Below the cavitation number, the trend is reversed, which may be resulted from the interference effect between cavities. The trajectory of bubble is predicted by using the Lagrangian method. Meanwhile the size of the bubble is predicted based on the Kirkwood-Bethe approximation. The predicted results for the bubble size are compared with the experimental results. It is shown that the numerical method predicts the time history of cavities fairly well.

  • PDF

Study on Tip-Vortex Cavitation and Its Noise Characteristics - Effects of Surface Roughness - (타원형날개끝 캐비테이션과 유기소음 특성연구 - 표면거칠기의 영향 -)

  • B.S. Hyun;C.M. Lee;H.S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.1
    • /
    • pp.84-93
    • /
    • 1994
  • The purpose of present study is to investigate the surface roughness on tip-vortex cavitation and its induced noise, emanating from an elliptic wing of NACA 0012 section. Roughness elements of $200{\mu}m$ are applied to the 10% portion of wing tip, and then, the wing tip as well as the leading edge. It is shown from cavitation observation that the cavitation inception is first visible at about half chord downstream of wing tip for most experimental conditions, and developed into the tip-vortex cavitation and finally the fully developed cavitation as cavitation number is decreased. Acoustic noise generated by a tip-vortex cavitation has its frequency range of 3 kHz to 50 kHz, while the fully-developed cavitation at lower cavitation number induces a broad band spectrum. It is also shown that, when the roughness elements are applied to the wing tip and the leading edge, the cavitation characteristics and its induced noise are improved. Moreover, it is appeared that the condition at which the rough surface is at pressure side gives a better result. although its lift-drag ratio is reduced.

  • PDF

Flow Instability of Cryogenic Fluid in the Downstream of Orifices

  • Thai, Quangnha;Lee, Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.413-418
    • /
    • 2008
  • Flow instability in the rocket turbo pump system can be caused by various reasons such as valve, orifice and venturi, etc. The inception of cavitation, especially in the propellant feeding system, is the primary cause of the mass flow and pressure oscillation due to cyclic formation and depletion of cavitation. Meanwhile, the main propellant in liquid rocket engine is the cryogenic one, which is very sensitive to temperature variation, and the variation of propellant properties caused by thermodynamic effect should be accounted for in the flow analysis. The present study focuses on the formation of cryogenic cavitations by adopting IDM model suggested by Shyy and coworkers. Also, the flow instability was investigated in the downstream of orifice by using a developed numerical code. Calculation results show that cryogenic cavitations can lead to flow instability resulting in mass flow fluctuations due to pressure oscillations. And the prediction of cavitations in cryogenic fluid is of vital importance in designing feeding system of LRE.

  • PDF

Numerical Modeling of Tip Vortex Flow of Marine Propellers

  • Pyo, Sang-woo
    • Journal of Ship and Ocean Technology
    • /
    • v.1 no.2
    • /
    • pp.19-30
    • /
    • 1997
  • The accurate prediction of the flow and the pressure distribution near the tip of the blade is crucial in determining the tip vortex cavitation inception which usually occurs on the blade tip or inside the core of the tip vortex just downstream of the blade tip. An improved boundary element method is applied to the prediction of the flow around propeller blades, with emphasis at the tip region. In the method, the Blow adapted grid and a higher order panel method, which combines a hyperboloidal panel geometry with a hi-quadratic dipole distribution, are used in order to accurately model the trailing wake geometry and the highly rolled-up regions in the wake. The method is applied to several propeller geometries and the results have been found to agree well to the existing experimental data. Inviscid flow methods are able to predict the pressures at the tip as well as the shape of the trailing wake. On the other hand, they are unable to determine the flow inside the viscous core of the tip vortex, where cavitation inception often occurs. Thus, a method is presented that treats the flow inside the viscous core. The inner flow is treated with a 2-D Clavier-stokes solution without making any assumptions for axisymmetric flow and conicity of the flow along the tip trajectory. The method can thus allow the treatment of general propeller blade configurations. The velocity and pressure distributions inside the core are shown and compared to those from other numerical methods.

  • PDF

Development of Stand-alone Performance Test System for an Intake-diffuser of the Waterjet Propulsion (Waterjet 추진장치의 흡입구유도관 단독성능 시험기법 개발)

  • Ahn Jong-Woo;Kim Ki-Sup;Park Young-Ha;Kim Kyung-Youl
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.6
    • /
    • pp.15-23
    • /
    • 2004
  • In order to investigate efficiency and flowfield charateristics of the intake-diffuser for the ship waterjet propulsion, new experimental verification technology was set up in the cavitation tunnel. 1-hole and 5-hole pilot tubes were designed and manufactured to measure the pressure and velocity distributions at intake-diffuser entrance and impeller inlet. The calibration of the 5-hole pilot tubes is conducted at the cavitation tunnel The cavitation inception occurs at the intake lip, and the occurrence position depends on IVR (Inlet Velocity Ratio) condition. The present experimental device will be applied sufficiently for the development of the design and performance improvement technologies.