• Title/Summary/Keyword: cause and pathogenesis

Search Result 310, Processing Time 0.03 seconds

Pathogenesis of Perirenal Edema in Pigs and Rabbits Administered with Oxalate, Nitrate and Calcium (Oxalate, Nitrate 및 Calcium 혼합투여(混合投與)에 의(依)한 돈(豚) 및 가토(家兎)의 Perirenal Edema 발병(發病))

  • Cho, Sung-whan;Lee, Cha-soo
    • Korean Journal of Veterinary Research
    • /
    • v.26 no.1
    • /
    • pp.139-147
    • /
    • 1986
  • In order to clarify the pathogenesis of perirenal edema, pigs and rabbits were administered with oxalate and nitrate, with oxalate nitrate and glycolic acid, with oxalate, nitrate and ascorbic acid and with oxalate, nitrate and calcium, respectively. The results obtained are summarized as follows; The pigs and rabbits administered with oxalate and nitrate with oxalate, nitrate and glycolic acid and with oxalate, nitrate and ascorbic acid, respectively, were not showed perirenal edema despite of observing the abundant oxalate crystals in the proximal convoluted tubles. But pigs and rabbits administered with oxalate, nitrate and calcium were histopathologically showed perirenal edema similar to those of pigs fed Amaranthus retroflexus. Therefore, author considered that oxalate, nitrate and calcium are main factors to cause perirenal edema. It was regarded that perirenal edema in pigs was caused by the reciprocal reactions of those materials including oxalate, nitrate and calcium which may produce vascular damage, decreased osmotic pressure by hypoproteinemia and increased vascular permeability in kidney, rather than the mechanical obstructions by the oxalate crystals in the proximal convoluted tubule.

  • PDF

The Clinical, Molecular, and Mechanistic Basis of RUNX1 Mutations Identified in Hematological Malignancies

  • Yokota, Asumi;Huo, Li;Lan, Fengli;Wu, Jianqiang;Huang, Gang
    • Molecules and Cells
    • /
    • v.43 no.2
    • /
    • pp.145-152
    • /
    • 2020
  • RUNX1 plays an important role in the regulation of normal hematopoiesis. RUNX1 mutations are frequently found and have been intensively studied in hematological malignancies. Germline mutations in RUNX1 cause familial platelet disorder with predisposition to acute myeloid leukemia (FPD/AML). Somatic mutations of RUNX1 are observed in various types of hematological malignancies, such as AML, acute lymphoblastic leukemia (ALL), myelodysplastic syndromes (MDS), myeloproliferative neoplasm (MPN), chronic myelomonocytic leukemia (CMML), and congenital bone marrow failure (CBMF). Here, we systematically review the clinical and molecular characteristics of RUNX1 mutations, the mechanisms of pathogenesis caused by RUNX1 mutations, and potential therapeutic strategies to target RUNX1-mutated cases of hematological malignancies.

Prions and Prion Diseases: Fundamentals and Mechanistic Details

  • Ryou, Chong-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1059-1070
    • /
    • 2007
  • Prion diseases, often called transmissible spongiform encephalopathies (TSEs), are infectious diseases that accompany neurological dysfunctions in many mammalian hosts. Prion diseases include Creutzfeldt-Jakob disease (CJD) in humans, bovine spongiform encephalopathy (BSE, "mad cow disease") in cattle, scrapie in sheep, and chronic wasting disease (CWD) in deer and elks. The cause of these fatal diseases is a proteinaceous pathogen termed prion that lacks functional nucleic acids. As demonstrated in the BSE outbreak and its transmission to humans, the onset of disease is not limited to a certain species but can be transmissible from one host species to another. Such a striking nature of prions has generated huge concerns in public health and attracted serious attention in the scientific communities. To date, the potential transmission of prions to humans via foodborne infection and iatrogenic routes has not been alleviated. Rather, the possible transmission of human to human or cervids to human aggravates the terrifying situation across the globe. In this review, basic features about prion diseases including clinical and pathological characteristics, etiology, and transmission of diseases are described. Based on recently accumulated evidences, the molecular and biochemical aspects of prions, with an emphasis on the molecular interactions involved in prion conversion that is critical during prion replication and pathogenesis, are also addressed.

Molecular discrimination of Panax ginseng cultivar K-1 using pathogenesis-related protein 5 gene

  • Wang, Hongtao;Xu, Fengjiao;Wang, Xinqi;Kwon, Woo-Saeng;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.43 no.3
    • /
    • pp.482-487
    • /
    • 2019
  • Background: The mixed-cultivation of different Panax ginseng cultivars can cause adverse effects on stability of yield and quality. K-1 is a superior cultivar with good root shape and stronger disease resistance. DNA markers mined from functional genes are clearly desirable for K-1, as they may associate with major traits and can be used for marker-assisted selection to maintain the high quality of Korean ginseng. Methods: Five genes encoding pathogenesis-related (PR) proteins of P. ginseng were amplified and compared for polymorphism mining. Primary, secondary, and tertiary structures of PR5 protein were analyzed by ExPASy-ProtParam, PSSpred, and I-TASSER methods, respectively. A coding single nucleotide polymorphism (SNP)-based specific primer was designed for K-1 by introducing a destabilizing mismatch within the 3' end. Allele-specific polymerase chain reaction (PCR) and real-time allele-specific PCR assays were conducted for molecular discrimination of K-1 from other cultivars and landraces. Results: A coding SNP leading to the modification of amino acid residue from aspartic acid to asparagine was exploited in PR5 gene of K-1 cultivar. Bioinformatics analysis showed that the modification of amino acid residue changed the secondary and tertiary structures of the PR5 protein. Primer KSR was designed for specific discrimination of K-1 from other ginseng cultivars and landraces. The developed real-time allele-specific PCR assay enabled easier automation and accurate genotyping of K-1 from a large number of ginseng samples. Conclusion: The SNP marker and the developed real-time allele-specific PCR assay will be useful not only for marker-assisted selection of K-1 cultivar but also for quality control in breeding and seed programs of P. ginseng.

Disease model organism for Parkinson disease: Drosophila melanogaster

  • Aryal, Binod;Lee, Youngseok
    • BMB Reports
    • /
    • v.52 no.4
    • /
    • pp.250-258
    • /
    • 2019
  • Parkinson's disease (PD) is a common neurodegenerative disorder characterized by selective and progressive loss of dopaminergic neurons. Genetic and environmental risk factors are associated with this disease. The genetic factors are composed of approximately 20 genes, such as SNCA, parkin, PTEN-induced kinase1 (pink1), leucine-rich repeat kinase 2 (LRRK2), ATP13A2, MAPT, VPS35, and DJ-1, whereas the environmental factors consist of oxidative stress-induced toxins such as 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP), rotenone, and paraquat. The analyses of their functions and mechanisms have provided important insights into the disease process, which has demonstrated that these factors cause oxidative damage and mitochondrial dysfunction. The most invaluable studies have been performed using disease model organisms, such as mice, fruit flies, and worms. Among them, Drosophila melanogaster has emerged as an excellent model organism to study both environmental and genetic factors and provide insights to the pathways relevant for PD pathogenesis, facilitating development of therapeutic strategies. In this review, we have focused on the fly model organism to summarize recent progress, including pathogenesis, neuroprotective compounds, and newer approaches.

Exposure to Phthalate Esters and the Risk of Endometriosis

  • Kim, Ju Hee;Kim, Sung Hoon
    • Development and Reproduction
    • /
    • v.24 no.2
    • /
    • pp.71-78
    • /
    • 2020
  • Endometriosis is a common gynecologic disease, worldwide, whose true prevalence is uncertain because it is a difficult disease to diagnose. Endometriosis is a common cause of chronic pelvic pain, dysmenorrhea, and infertility, and is also associated with ovarian cancer. Although the risk factors for endometriosis are unclear, there is increasing evidence that exposure to environmental contaminants, especially phthalates, could affect the pathogenesis of endometriosis. Phthalates are industrial chemicals, used to make flexible plastics, and are present in numerous common plastic products, including medical devices and materials. Several in vitro studies have suggested a positive association between exposure to phthalate, or phthalate metabolites, and the risk of endometriosis. Since the 2000s, studies based on human plasma and urinary concentrations of various phthalate metabolites have been published, but there are still limitations to our understanding of the pathophysiology of phthalates and endometriosis. This report aims to review the current state of knowledge about a possible role of phthalates in the pathogenesis of endometriosis based on cell culture, animal models, and human data.

The Stress-Activated Signaling (SAS) Pathways of a Human Fungal Pathogen, Cryptococcus neoformans

  • Jung, Kwang-Woo;Bahn, Yong-Sun
    • Mycobiology
    • /
    • v.37 no.3
    • /
    • pp.161-170
    • /
    • 2009
  • Cryptococcus neoformans is a basidiomycete human fungal pathogen that causes meningoencephalitis in both immunocompromised and immunocompetent individuals. The ability to sense and respond to diverse extracellular signals is essential for the pathogen to infect and cause disease in the host. Four major stress-activated signaling (SAS) pathways have been characterized in C. neoformans, including the HOG (high osmolarity glycerol response), PKC/Mpk1 MAPK (mitogen-activated protein kinase), calcium-dependent calcineurin, and RAS signaling pathways. The HOG pathway in C. neoformans not only controls responses to diverse environmental stresses, including osmotic shock, UV irradiation, oxidative stress, heavy metal stress, antifungal drugs, toxic metabolites, and high temperature, but also regulates ergosterol biosynthesis. The PKC(protein kinase C)/Mpk1 pathway in C. neoformans is involved in a variety of stress responses, including osmotic, oxidative, and nitrosative stresses and breaches of cell wall integrity. The $Ca^{2+}$/calmodulin- and Ras-signaling pathways also play critical roles in adaptation to certain environmental stresses, such as high temperature and sexual differentiation. Perturbation of the SAS pathways not only impairs the ability of C. neoformans to resist a variety of environmental stresses during host infection, but also affects production of virulence factors, such as capsule and melanin. A drug(s) capable of targeting signaling components of the SAS pathway will be effective for treatment of cryptococcosis.

Identification of Differentially Expressed Genes by Exposure of Methylmercury in Neuroblastoma Cell Line Using Suppression Subtractive Hybridization (SSH)

  • Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.1
    • /
    • pp.60-66
    • /
    • 2006
  • Methylmercury (MeHg), one of the heavy metal compounds, can cause severe damage to the central nervous system in humans. Many reports have shown that MeHg is poisonous to human body through contaminated foods and has released into the environment. Despite many studies on the pathogenesis of MeHg-induced central neuropathy, no useful mechanism of toxicity has been established so far. This study, using of suppression subtractive hybridization (SSH) method, was peformed to identify differentially expressed genes by MeHg in SH-SY5Y human neuroblastoma cell line. We prepared to total RNA from SH-SY5Y cells treated with solvent (DMSO) and $6.25\;{\mu}M\;(IC_{50})$ MeHg and performed forward and reverse SSH. Differentially expressed cDNA clones were screened by dot blot, sequenced and confirmed that individual clones indeed represent differentially expressed genes with real time RT-PCR. These sequences were identified by BLAST homology search to known genes or expressed sequence tags (ESTs). Analysis of these sequences may provide an insight into the biological effects of MeHg in the pathogenesis of neurodegenerative disease and a possibility to develop more efficient and exact monitoring system of heavy metals as ubiquitous environmental pollutants.

Delayed Cerebral Infarction after Resection of Craniopharyngioma (두개인두종의 적출후 발현된 지연성 뇌경색)

  • Park, Geun Chul;Jung, Jin-Myung;Kim, Joon Soo;Kim, Jae Hyung;Lee, Hyun Seok;Hwang, Soo Hyun;Park, In Sung;Kim, Eun-Sang;Han, Jong Woo
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.7
    • /
    • pp.849-854
    • /
    • 2001
  • Delayed cerebral infarction after resection of craniopharyngioma is a uncommon entity, but leads to high morbidity and mortality. We present 3 such cases and discuss the etiology and pathogenesis with review of pertinent literatures. In our cases, delayed deterioration of consciousness was observed in all cases. All of them expired. The cause may be multifactorial and the surgical approach may contribute to the pathogenesis of delayed cerebral infarction. We suspect vasospasm might be the major mechanism of pathogenesis. Vessels were primed to spasm during operation due to blood in the cistern or mechanical injury. Vasoactive materials may have been liberated from the pituitary stalk or injured hypothalamus, either at the time of surgery, or later, after portions of tumor have undergone necrosis. The high degree of suspicion to detect vasospasm should be done in the case of the delayed deterioration of mental status at an early stage of craniopharyngioma surgery. Possible mechanism underlying this delayed cerebral infarction are discussed.

  • PDF

LJ-2698, an Adenosine A3 Receptor Antagonist, Alleviates Elastase-Induced Pulmonary Emphysema in Mice

  • Boo, Hye-Jin;Park, So Jung;Noh, Myungkyung;Min, Hye-Young;Jeong, Lak Shin;Lee, Ho-Young
    • Biomolecules & Therapeutics
    • /
    • v.28 no.3
    • /
    • pp.250-258
    • /
    • 2020
  • Emphysema, a major component of chronic obstructive pulmonary disease (COPD), is a leading cause of human death worldwide. The progressive deterioration of lung function that occurs in the disease is caused by chronic inflammation of the airway and destruction of the lung parenchyma. Despite the main impact of inflammation on the pathogenesis of emphysema, current therapeutic regimens mainly offer symptomatic relief and preservation of lung function with little therapeutic impact. In the present study, we aimed to discover novel therapeutics that suppress the pathogenesis of emphysema. Here, we show that LJ-2698, a novel and highly selective antagonist of the adenosine A3 receptor, a G protein-coupled receptor involved in various inflammatory diseases, significantly reversed the elastase-induced destructive changes in murine lungs. We found that LJ-2698 significantly prevented elastase-induced airspace enlargement, resulting in restoration of pulmonary function without causing any obvious changes in body weight in mice. LJ-2698 was found to inhibit matrix metalloproteinase activity and pulmonary cell apoptosis in the murine lung. LJ-2698 treatment induced increases in anti-inflammatory cytokines in macrophages at doses that displayed no significant cytotoxicity in normal cell lines derived from various organs. Treatment with LJ-2698 significantly increased the number of anti-inflammatory M2 macrophages in the lungs. These results implicate the adenosine A3 receptor in the pathogenesis of emphysema. Our findings also demonstrate the potential of LJ-2698 as a novel therapeutic/preventive agent in suppressing disease development with limited toxicity.