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Parkinson’s disease (PD) is a common neurodegenerative 
disorder characterized by selective and progressive loss of 
dopaminergic neurons. Genetic and environmental risk factors 
are associated with this disease. The genetic factors are 
composed of approximately 20 genes, such as SNCA, parkin, 
PTEN-induced kinase1 (pink1), leucine-rich repeat kinase 2 
(LRRK2), ATP13A2, MAPT, VPS35, and DJ-1, whereas the 
environmental factors consist of oxidative stress-induced toxins 
such as 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP), 
rotenone, and paraquat. The analyses of their functions and 
mechanisms have provided important insights into the disease 
process, which has demonstrated that these factors cause 
oxidative damage and mitochondrial dysfunction. The most 
invaluable studies have been performed using disease model 
organisms, such as mice, fruit flies, and worms. Among them, 
Drosophila melanogaster has emerged as an excellent model 
organism to study both environmental and genetic factors and 
provide insights to the pathways relevant for PD pathogenesis, 
facilitating development of therapeutic strategies. In this 
review, we have focused on the fly model organism to 
summarize recent progress, including pathogenesis, neuro-
protective compounds, and newer approaches. [BMB Reports 
2019; 52(4): 250-258]

INTRODUCTION

Parkinson disease (PD) is the second-most common human 
neurodegenerative (ND) disorder after Alzheimer’s disease. 
The pathological features involve slow degeneration of the 
dopaminergic neurons in the substantia nigra (SN) and 
formation of intracytoplasmic Lewy body (LB) inclusion 
structures. Moreover, PD is characterized by neuronal 

inclusions composed of abnormal -synuclein, which is 
generally referred to as the Lewy-related pathology (1). It leads 
to cellular toxicity and, eventually, PD pathogenesis. Most PD 
cases are idiopathic, which appears to be involved in multiple 
processes such as neuroinflammation, excitotoxicity, oxidative 
stress, environmental toxins, and accumulation of misfolded 
proteins from proteasome impairment (2).

Over the past 15 years, several gene mutations have been 
definitively shown to mediate familial PD. For instance, SNCA 
mutations (encoding -synuclein to PARK1 (3) and PARK4 (4), 
LRRK2 (PARK8) (5), VPS35 (PARK17) (6), HtrA2 (PARK13) (7), 
and EIG4G1 (PARK18) (8) cause autosomal dominant forms of 
PD. Moreover, mutations in parkin (PARK2) (9), DJ-1 (PARK7) 
(10), pink1 (PARK6) (11), DNAJC6 (PARK19) (12), SYANJ1 
(PARK20) (13), and ATP13A2 (PARK9) (14) are associated with 
autosomal-recessive forms of PD.

Mitochondrial dysfunction and oxidative stress are the 
symptoms of PD pathogenesis (15). Recent demonstrations 
that pink1, parkin, and DJ-1 play crucial roles in mitochondrial 
function and resistance to oxidative stress, reinforcing the 
central importance of these themes in PD pathogenesis. 
Moreover, it allows us to understand PD processes at the 
molecular and cellular levels.

Drosophila melanogaster, commonly known as the fruit fly, 
is a powerful organism for modeling human ND diseases. 
Nearly 75% of all human disease genes have Drosophila 
homologues (16). Drosophila models have successfully 
provided valuable insights into the elucidation of patho-
mechanisms and development of therapies for neurodegene-
rative diseases. The causal relationship among PD abnormalities, 
such as dopaminergic cell degeneration, inclusion body 
formation, and locomotion dysfunction, have been elucidated 
with the expression of -synuclein in Drosophila models (17). 
Most recently, SPG7 mutants showed a short life span, 
progressive locomotion defects, and sensitivity to chemical 
and environmental stressors (18). Here, we reviewed in detail 
how these genetic and environmental factors are involved in 
PD with model organisms, especially D. melanogaster.

DOPAMINERGIC (DA) NEURONS IN PARKINSON 
DISEASE

PD is characterized by the death of DA neurons in the 
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Fig. 1. Toxins and genetic factors responsible for PD. Schematic 
illustrations for related genes of PD and toxins in the mitochondria.

substantia nigra (SN) region of the brain. Oxidative stress plays 
a key role in the DA neurons’ degeneration. The susceptibility 
of the brain, especially the SN to oxidative stress, is 
augmented by various factors such as high oxygen demands, 
higher rates of oxidative metabolism, lower levels of protective 
antioxidant system, and an abundant neuronal network (19). 
These pathways produce abundant quantities of ROS species. 
Moreover, mitochondrial dysfunction and the impaired protein 
degradation pathway align to the degeneration of dopaminergic 
neurons which further influence PD-related protein 
expressions, such as LRRK2, -Syn, PINK1, UCH-L1, and DJ-1 
(20-22). The misexpression or overexpression of the above 
parameters in D. melanogaster was examined to unscramble 
the root cause and mechanisms of DA neuronal loss. 
Therefore, studies of molecular and cellular mechanisms 
between mitochondrial dysfunction and different genes are 
essential for establishing therapeutic treatment for PD.

MITOCHONDRIAL DYSFUNCTION IN PD

Most mitochondrial dysfunction results from damage to 
complex I or nicotinamide adenine dinucleotide phosphate 
(NADH): ubiquinone oxidoreductase—which forms a part of 
the oxidative phosphorylation system (23). PD pathogenesis 
results from impairment to complex I and complex I-mediated 
dopaminergic cell death resulting from Bax transcription 
activation (24). Furthermore, a clear correlation exists between 
ND diseases and impaired electron transport chain function. 
Iron containing cytochromes-associated movement plays a 
particularly prominent role in the mitochondrial membrane 
(25). As a result of this dysfunction, increased free radicals 
have been recorded, which is harmful to the proper 
functioning of cells. Oxidants, including hydrogen peroxide 
and superoxide radicals, are produced as byproducts of 
oxidative phosphorylation, making the mitochondria the main 
site of ROS generation within a cell. However, in pathological 
situations where mitochondrial respiratory defects occur, the 
amount of ROS produced by the electron transport chain 
increases dramatically, swamping the antioxidant protection 
mechanisms. PD has been shown to produce these conditions 
(Fig. 1). Evidence that oxidative stressors, such as ROS, are the 
culprits in these mitochondrial dysfunctions has recently 
emerged. The generation of oxidizing agents, such as hydrogen 
peroxide or superoxide, recapitulates the mitochondrial 
dysfunction (26).

Excess free radicals are scavenged by enzymes such as 
glutathione peroxidase, catalase, and superoxide dismutase in 
normal mitochondria. However, when ROS build up, they 
interact with the membrane lipids and proteins, altering their 
conformations and, ultimately, disrupting their functioning. 
Furthermore, complex I inhibitors, like MPTP or rotenone, 
demonstrate preferential cytotoxicity to the DA neurons (27). 
The MPP＋ (oxidized form of MPTP that is toxic) accumulates 
in the mitochondria, where it inhibits complex I in the 

mitochondrial electron transport chain complex (METC), 
thereby disrupting the flow of electrons along the METC (Fig. 
1). This event results in decreased ATP production and 
increased ROS generation (28). Similar to MPTP, rotenone is 
another mitochondrial complex I inhibitor. Interestingly, 
rotenone toxicity is involved in oxidative damage to proteins 
and Lewy body-like inclusions (29). Other evidence for 
mitochondrial dysfunction related to oxidative stress and DA 
cell damage comes from findings that mutations in protein 
genes like -synuclein, parkin, DJ-1, or pink1 are linked to the 
familial forms of PD (Fig. 1). Indeed, the latest study provides 
evidence that elevated mitochondrial Ca2＋ is responsible for 
mitochondrial damage and neuronal death, which is 
controlled by a mitochondrial trafficking protein, Miro (30). 
The intercorrelated role of these proteins on mitochondrial 
dynamics reveals a common function in the mitochondrial 
stress response, which may provide a significant physiological 
basis for PD pathology (31).

MOLECULAR MODELS FOR PARKINSON DISEASE 
(Table 1)

SNCA (-synuclein: S)
SNCA encodes a small protein called -synuclein. -Synuclein 
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PD gene/locus Mammalian/mouse Drosophila melanogaster

SNCA/PARK1 Expression of Human -Syn (A53T): ↑Accumulation of 
-synuclein, ND and leading to cell death (75).

Expression of Human -Syn (A30P): Progressive motor 
disorder accompanied by accumulation of –synuclein in 
the soma and neurite (76).

Expression of Human -Syn (A30P and A53T) in 
pan-neuron: Dopaminergic cell degeneration, LB 
inclusion formation and locomotor dysfunction (17).

parkin/PARK2 Expression of C-terminally truncated parkin in DA neuron: 
Motor deficit, nigrostriatal degeneration, -synuclein 
accumulation (77).

KO mutants: ↓Lifespan and locomotion, and male 
sterility (40).

Loss of proper morphology of DA neurons and deficit in 
motor function (42).

PARK3 ND in SN of brain and LB formation, presence of 
neurofibrillary tangles and Alzheimer plaques (78).

-

SNCA/PARK4 Nigral degeneration with LB, vacuoles in neurons of the 
hippocampus and other brain parts (78).

-

UCH-L1/PARK5 Rotenone induced mouse models: S-Nitrosylation of 
UCH-L1, ↑-synuclein aggregation (79). 

KD mutants: ↓Dopamine in the brain results in 
locomotor dysfunction (80).

pink1/PARK6 KO mouse: Impairment in hindlimb and forelimb steps 
(81).

KO mutants: Mitophagy of flight muscle cells and 
dopaminergic neuron with aging (82).

DJ-1/PARK7 KO mouse: Loss of DA neurons in SN of brain (83). DJ-1 mutant: ↓Climbing activity (41).
Exhibit taste impairment and memory defect (59).

LRRK2/PARK8 Overexpression of LRRK2R1441G: Progressive motor deficit 
with immobility by 10-12 months (84).

Expression of RNA interference of JNKK or 
dominant-negative form of JNK increases fly survival 
time, locomotor activity, and decrease DA neuronal 
degeneration in LRRK2G2019S overexpression in DA 
neurons (63).

ATP13A2/PARK9 KD mouse: Impairment in lysosomal degradation, 
-synuclein accumulation and neurotoxicity (85).

-

Unknown/PARK10 - -
GIGYF2/PARK11 Heterozygous Gigyf2＋/− mouse: Exhibits motor 

dysfunction by 12-15 months (86).
KO mutants: Locomotor defects and early mortality (87).

Unknown/PARK12 - -
HtrA2/PARK13 KO mouse: ↓Climbing ability, movement disorders, and 

tremor (88).
KO mutants: Mitochondrial defects, loss of flight and 

climbing ability, male infertility, and increase of 
sensitivity to oxidative stress (89). 

PLA2G6/PARK14 KO mouse: Loss of DA neurons in SN and rescue by 
feeding L-DOPA in motor dysfunction (90).

KO mutants: Mitochondrial dysfunction and oxidative 
stress (91).

FBOX7/PARK15 KO mouse: ↓Proteasome activities and early-onset motor 
deficit (92).

Expression of FBXO7 rescues parkin mutant phenotypes, 
including locomotors dysfunction, DA neuron losses and 
muscle degeneration (93).

RAB7L1 (one of the 
candidate 
gene)/PARK16

KD rodent: DA neuron degeneration as LRRK2 mutant 
phenotype.

Overexpression of RAB7L1 reduces LRRK2 mutant induced 
DA neurodegeneration (94).

KD Mutants: DA neuron degeneration as LRRK2 mutant 
phenotype.

Overexpression of RAB7L1 in DA neurons rescues DA 
neurodegeneration (94).

VPS35/PARK17 VPS35＋/− mouse: Mitochondrial fusion and cellular 
respiration function impairments and neuronal loss (95).

KD of VPS35: Locomotor impairments, mild compound 
eye disorganization, and interommatidial bristleloss (37).

EIG4G1/PARK18 Mutation in EIG4G1 (A502V, R1205H): Impairment in 
oxidative stress resistance (8).

-

DNAJC6/PARK19 KO mouse: Early postnatal mortalities, and weight loss of 
surviving pups (96).

KD mutants: Loss of climbing abilities, decrease of 
lifespan, and DA neuron death (97).

SYNJ1/PARK20 SYNJ1＋/−mice: Progressive PD-like behavioral alterations 
and DA neurodegeneration (98).

KD mutants: ↓Endogenous synaptic transmission at the 
neuromuscular junction, and 80% reduction of evoked 
transmission (99).

PD genes and their phenotypic expressions in animal models, especially Drosophila melanogaster.
PD: Parkinson’s disease, UCH-L1: ubiquitin carboxyl-terminal esterase L1, PINK1: PTEN-induced putative kinase 1, LRRK2: leucine-rich repeat kin-
ase 2, HtrA2: High temperature requirement protein A2, FBOX7: F-box protein 7, LOF: Loss of function, KD: Knockdown, KO: Knockout, DA: dop-
amine, ↓: Decreased/Reduced, ↑: Increased/Enhanced, LB: Lewy body.

Table 1. Parkinson's disease and their phenotypic expressions in animal models
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Fig. 2. Clinical presentation of pathogenesis in PD and fly 
dopaminergic neuronal clusters. (A) Dopaminergic neurons in the 
substantia nigra and PD pathology related with Lewy body. (B) 
Dopaminergic neuronal clusters in a fly brain.

is abundant in the brain; small amounts are detected in the 
heart, muscles, and other tissues. PD correlates with the 
formation of insoluble fibrillar aggregates in the central 
nervous system that contain -synuclein (3) and misfolding of 
-synuclein resulting from point mutations in SNCA (Fig. 2A). 
Aggregated monomeric -synuclein generates  sheet-rich 
oligomers, inducing selective oxidation of the ATP synthase  
subunit and mitochondrial lipid peroxidation. These oxidation 
events increase the probability of permeability transition pore 
opening, triggering mitochondrial swelling and, ultimately, 
cell death (32). A30P, A53T, and E46K (33) are three 
PD-related S mutations. Among them, A30P and A53T are 
the most well-studied mutations. A53T transgenic mice 
displayed abnormally large accumulations of -synuclein, 
causing rapid neurodegeneration and leading to cell death. 
A30P -synuclein transgenic animals exhibit similar 
physiological and phenotypic characteristics to those found in 
humans, including the slow degeneration of DA neurons, 
formation of LB-like inclusions, and loss of locomotor 
functions (17). Similarly, a Drosophila-expressing A30P mutant 
causes a more rapid loss of climbing ability (34). Cathespin D, 
glucocerobrosidase, and proteinase K actively participate in 
accumulation of -synuclein in the brain, resulting in DA 
neuronal loss along with decreased locomotor activity (35-38). 
N-terminal 32 amino acids of human -synuclein contains 
mitochondrial targeting signal that plays a role in the 
association of these proteins with the inner mitochondrial 
membrane. Aggregated -synuclein in the mitochondrial 
membrane of DA neurons results in complex I impairment, 

increased ROS production, and decreased mitochondrial 
transmembrane potential (39).

parkin
parkin mutation leads to an early onset form of PD, and its 
product encodes an E3 ligase, including functional domains 
such as the ubiquitin-like domain and RING finger domains. 
The first in vivo indication that parkin regulates mitochondrial 
integrity arose from studies on Drosophila parkin mutants. 
parkin fly mutants exhibit locomotor defects, reduced 
longevity, male sterility, DA neurodegeneration, and 
mitochondrial defects in several energy-intensive tissues such 
as muscles and brain (40, 41). D. parkin null mutants display 
degeneration of DA neurons in the PPL1 cluster and reduced 
TH- staining in the PPM1/2 cluster (Fig. 2B), resulting in 
reduced DA content in the brain. D. parkin loss-of-function 
mutants exhibit shrinkage of DA neurons with a decrease of 
tyrosine hydroxylase (TH) level and locomotor defects (42).

pink1
This gene encodes a putative serine/threonine kinase with a 
mitochondrial targeting sequence (11). pink1 mutants possess 
fragmentation in mitochondrial cristae and are very susceptible 
to oxidative stress. pink1 mutants are characterized by reduced 
lifespan, locomotor defects, degenerated flight muscle, and 
loss of DA neurons (43). D. pink1 mutants also have a 
defective thorax phenotype in three-day-old flies as well as 
age-dependent loss of DA neurons in the PPL1 cluster at the 
age of 30 days (44). Furthermore, pink1 loss of function in 
mice models resulted in locomotor defects and degenerated 
DA neurons (45). These studies provide cellular and 
behavioral phenotypes of pink1 mutant reproducing PD 
phenotypes.

The pink1 mutant flies share marked phenotypic similarities 
with parkin mutants. A pink1 mutant phenotype was rescued 
by parkin overexpression, whereas pink1 overexpression had 
no effect on parkin mutant phenotypes (46, 47). These 
observations suggest that Parkin acts downstream of Pink1 in 
the same pathway, which is conserved between flies and 
mammals. Genetic epistasis analyses revealed that proteins 
function in the same pathway to maintain mitochondrial 
fidelity, although they are localized differently; pink1 localizes 
to the mitochondria, and parkin resides in the cytosol (40, 47, 
48). Cell studies have revealed parkin is recruited from the 
cytosol to depolarized mitochondria to mediate selective 
autophagic removal of the damaged organelle (mitophagy) 
(49). Furthermore, in Drosophila, pink1 directly phosphorylates 
parkin to control its translocation to the mitochondria (50). 
The above finding suggests that pink1 and parkin act in a 
common pathway.

DJ-1
DJ-1 binds to the subunits of mitochondrial complex I and 
regulates its activity (51). It is present in the mitochondrial 
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matrix and intermembranal space (52). Its translocation into 
the mitochondria is enhanced by oxidative stress. DJ-1 KO 
mice elicit nigrostriatal DA neuron loss and accumulate 
defective mitochondria, which can be reversed by adenovirus- 
mediated DJ-1 overexpression; this phenomenon demonstrates 
DJ-1’s specific role in mitochondrial function (53).

DJ-1 encodes a highly conserved protein belonging to the 
ThiJ/PfPI superfamily of molecular chaperones (54). Two DJ-1 
orthologs exist in Drosophila: DJ-1 and DJ-1. DJ-1 is 
predominantly expressed in the male testis and, at a lower 
level, in the brain than DJ-1. DJ-1 exhibits a role in 
oxidative stress, generating DA neurodegeneration, although 
the DJ-1 mutant contributes more to DA neuronal 
degeneration (55). DJ-1 decreases climbing ability (41) and 
increases sensitivity to environmental toxins such as H2O2, 
paraquat, and rotenone (56). DJ-1 loss of function results in 
accumulated ROS in adult brains, elevated levels of lipid 
peroxidation, and an increased catalase enzymatic activity 
(57). In Drosophila, both the aging process and oxidation 
challenge promote DJ-1 overoxidation at cysteine 104 (which 
is analogous to cysteine 106 in human DJ-1) which, in turn, 
irreversibly inactivates the protein DJ-1 (58). Aged flies 
demonstrate further vulnerability to oxidative stress, which 
suggests that DJ-1’s protective function against oxidative stress 
could be progressively lost through aging, increasing the risk 
of DA neuron loss. Recently, our group reported that the DJ-1 
mutant has low sugar sensitivity and reduced taste-associative 
memory (59), which are relevant phenotypes because ＞ 30% 
of PD patients have dementia. Our group also showed 
recovery from reduced memory defect by feeding health 
supplements such as omija. The fly model organism can be 
used for drug discovery in behavioral as well as cellular 
studies.

LRRK2
The most common form of sporadic PD occurs due to 
mutations in the gene encoding LRRK2, which comprises a 
large domain GTPase and kinase activity. LRRK2 has been 
associated with a diverse set of cellular functions and signaling 
pathways, including mitochondrial function, vesicle trafficking, 
together with endocytosis, retromer complex modulation, and 
autophagy (60). The study in mice showed that the 
degeneration of dopamine neurons is enhanced due to 
combined effects of LRRK2G2019S mutation with environ-
mental toxins such as MPTP (61). The overexpression of 
LRRK2 or LRRK2-G2019S lead to retinal degeneration, 
selective loss of DA neurons, decreased climbing activity, and 
early mortality in flies (62). LRRK2-induced neuronal 
degeneration is mediated by hemipterous (hep or JNKK). The 
expression of RNA interference of JNKK or dominant-negative 
form of JNK, a downstream kinase of JNKK, increases fly 
survival, locomotor activity, and decreases DA neuronal 
degeneration in LRRK2-G2019S mutant (63).

ENVIRONMENTAL RISK FACTORS FOR PD

MPTP
MPTP is the most commonly used toxin to generate a PD 
model. It is one of the first models to link the inhibition of 
mitochondria complex I to PD (64). Several animal species, 
such as sheep, cats, mice, rats, and monkeys have been treated 
with MPTP to recapitulate the phenotype of a PD model. Both 
monkeys and mice treated with MPTP have shown selectively 
progressive loss of DA neurons, but no LBs (65). Loss of DA 
neurons leads to reduced motor abilities, although there are no 
LBs. MPTP induces a high level of NO in flies. Resveratrol 
decreases MPTP-mediated oxidative stress in flies and 
increases their life span. Therefore, resveratrol can be used as 
a therapeutic agent against PD (66), which indicates that a 
MPTP toxin-induced model in D. melanogaster is a useful tool 
for PD pathophysiology.

Rotenone and paraquat
Several studies have looked at rotenone and paraquat (PQ) (a 
proposed mitochondrial complex I inhibitor) in Drosophila to 
investigate the susceptibility of PD genetic models and their 
role in neuronal cell death. Not only do these models induce 
DA neuron loss, but also show evidence of behavioral and 
histological changes, completing the pathological picture of 
PD (67). Paraquat causes oxidative stress in cells through the 
ROS generation. Rotenone blocks the mitochondrial electron 
transport chain through inhibition of complex I, as seen in 
MPTP. Rotenone also blocks mitosis and inhibits cell 
proliferation, which is caused by the perturbation of 
microtubule assembly and decreases the GTP hydrolysis rate 
(68). Chronic systemic exposure to rotenone in rats led to the 
development of several features of PD, including nigrostriatal 
DA degeneration. This model has been shown to reproduce 
almost all PD features, including the formation of intracellular 
inclusions that resemble LB (69).

THERAPEUTICS APPROACH IN PARKINSON DISEASE

Vitamin K2 acts as an electron carrier and enhances ATP 
production in the mitochondria. Defective mitochondria are 
also found in Parkinson’s patients with a pink1 or parkin 
mutation. Vitamin K2 may offer hope for a new PD treatment 
(70). Vitamin K2 is essential to electron transfer in Drosophila 
mitochondria. Heix mutants show severe mitochondrial 
defects that are rescued by vitamin K2, which serves as a 
mitochondrial electron carrier, helping to maintain normal 
ATP production. A major breakthrough in PD drug 
development was L-dopa, which protects the brain from 
oxidative stress and free radicals (71). Most pharmacological 
approaches to PD treatment are symptomatic and target the 
nigrostriatal dopaminergic pathway. The gold-standard drug is 
L-dopa—a precursor of dopamine—which crosses the 
blood–brain barrier and is converted to dopamine. Other drugs 
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are used as monotherapy or combined with L-dopa to enhance 
its efficacy, including dopamine receptor agonists, catechol- 
O-methytransferase (COMT) inhibitors, and monoamine 
oxidase (MAO) inhibitors (72). Zinc is an essential trace metal 
and a component of several enzymes and transcriptional 
regulators. Unlike copper and iron, zinc is not redox-active 
and, under most conditions, it serves as an antioxidant. The 
condition of parkin mutants raised on zinc-supplemented food 
is greatly improved. Parkin mutants perform best at high zinc 
concentrations, where controls begin to show adverse effects 
as a result of the metal supplement. This is manifested in a 
higher frequency of reaching adulthood, extended lifespan, 
and improved motor abilities (73).

CONCLUSION AND FUTURE PERSPECTIVE

Drosophila mutants and transgenic models have been used to 
study the genetics and environmental factors responsible for 
PD. More than 20 genes are associated with PD, which shows 
interaction between genetics and environmental factors. The 
common endpoint of gene and toxins are believed to initiate 
mitochondrial dysfunction, which results in lower ATP and 
oxidative stress. Various antioxidants, such as zinc and vitamin 
K2, have shown good medicinal value in PD. Similarly, omija 
feeding has also helped resolve taste memory problems and 
learning defects. Until now, most studies have focused on 
mitochondrial dysfunction and correlated genes. In addition to 
mitochondrial dysfunction and oxidative stress, endoplasmic 
reticulum (ER) stress is another demanding model to study PD 
pathogenesis in D. melanogaster. ER stress can be reduced 
with piperine, which increases mesencephalic astrocyte- 
derived neurotrophic factor expression that ameliorates 
spinocerebrellar ataxia 17 (SCA17)-associated neuropathology 
in the TBP-105Q knock-in mouse model (74). The study of 
piperine’s involvement in controlling neurodegeneration 
would be a fascinating approach for effective prophylaxis. 
More powerful clinical treatments than L-dopa (a precursor of 
dopamine) are needed for PD patients, especially in an aging 
society.
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