Browse > Article
http://dx.doi.org/10.5483/BMBRep.2019.52.4.204

Disease model organism for Parkinson disease: Drosophila melanogaster  

Aryal, Binod (Department of Bio and Fermentation Convergence Technology, Kookmin University)
Lee, Youngseok (Department of Bio and Fermentation Convergence Technology, Kookmin University)
Publication Information
BMB Reports / v.52, no.4, 2019 , pp. 250-258 More about this Journal
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by selective and progressive loss of dopaminergic neurons. Genetic and environmental risk factors are associated with this disease. The genetic factors are composed of approximately 20 genes, such as SNCA, parkin, PTEN-induced kinase1 (pink1), leucine-rich repeat kinase 2 (LRRK2), ATP13A2, MAPT, VPS35, and DJ-1, whereas the environmental factors consist of oxidative stress-induced toxins such as 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP), rotenone, and paraquat. The analyses of their functions and mechanisms have provided important insights into the disease process, which has demonstrated that these factors cause oxidative damage and mitochondrial dysfunction. The most invaluable studies have been performed using disease model organisms, such as mice, fruit flies, and worms. Among them, Drosophila melanogaster has emerged as an excellent model organism to study both environmental and genetic factors and provide insights to the pathways relevant for PD pathogenesis, facilitating development of therapeutic strategies. In this review, we have focused on the fly model organism to summarize recent progress, including pathogenesis, neuroprotective compounds, and newer approaches.
Keywords
Environmental toxins; Genetic factors; Mitochondrial dysfunction; Oxidative stress; Parkinson's disease;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Chiu C-C, Yeh T-H, Lu C-S et al (2017) PARK14 PLA2G6 mutants are defective in preventing rotenone-induced mitochondrial dysfunction, ROS generation and activation of mitochondrial apoptotic pathway. Oncotarget 8, 79046-79060   DOI
2 Vingill S, Brockelt D, Lancelin C et al (2016) Loss of FBXO7 (PARK15) results in reduced proteasome activity and models a parkinsonism-like phenotype in mice. EMBO J 35, 2008-2025   DOI
3 Burchell VS, Nelson DE, Sanchez-Martinez A et al (2013) The Parkinson's disease-linked proteins Fbxo7 and Parkin interact to mediate mitophagy. Nat Neurosci 16, 1257-1265   DOI
4 MacLeod DA, Rhinn H, Kuwahara T et al (2013) RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson's disease risk. Neuron 77, 425-439   DOI
5 Tang F-L, Liu W, Hu J-X et al (2015) VPS35 deficiency or mutation causes dopaminergic neuronal loss by impairing mitochondrial fusion and function. Cell Rep 12, 1631-1643   DOI
6 Yim Y-I, Sun T, Wu L-G et al (2010) Endocytosis and clathrin-uncoating defects at synapses of auxilin knockout mice. Proc Natl Acad Sci U S A 107, 4412-4417   DOI
7 Song L, He Y, Ou J et al (2017) Auxilin underlies progressive locomotor deficits and dopaminergic neuron loss in a Drosophila model of Parkinson's disease. Cell Rep 18, 1132-1143   DOI
8 Pan P-Y, Li X, Wang J et al (2017) Parkinson's Disease-Associated LRRK2 Hyperactive Kinase mutant Disrupts Synaptic Vesicle Trafficking in Ventral midbrain Neurons. J Neurosci 47, 11366-11376
9 Schulze KL, Broadie K, Perin MS and Bellen HJ (1995) Genetic and electrophysiological studies of Drosophila syntaxin-1A demonstrate its role in nonneuronal secretion and neurotransmission. Cell 80, 311-320   DOI
10 Forno LS (1996) Neuropathology of Parkinson's disease. J Neuropathol Exp Neurol 55, 259-272   DOI
11 Whitton P (2007) Inflammation as a causative factor in the aetiology of Parkinson's disease. Br J Pharmacol 150, 963-976   DOI
12 Polymeropoulos MH, Lavedan C, Leroy E et al (1997) Mutation in the ${\alpha}$-synuclein gene identified in families with Parkinson's disease. Science 276, 2045-2047   DOI
13 Singleton A, Farrer M, Johnson J et al (2003) ${\alpha}$-Synuclein locus triplication causes Parkinson's disease. Science 302, 841-841   DOI
14 Zimprich A, Biskup S, Leitner P et al (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44, 601-607   DOI
15 Zimprich A, Benet-Pages A, Struhal W et al (2011) A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am J Hum Genet 89, 168-175   DOI
16 Wakabayashi K and Takahashi H (2007) Pathology of familial Parkinson's disease. Brain Nerve 59, 851-864
17 Chartier-Harlin M-C, Dachsel JC, Vilarino-Guell C et al (2011) Translation initiator EIF4G1 mutations in familial Parkinson disease. Am J Hum Genet 89, 398-406   DOI
18 Kitada T, Asakawa S, Hattori N et al (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605-608   DOI
19 Valente EM, Abou-Sleiman PM, Caputo V et al (2004) Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304, 1158-1160   DOI
20 Bonifati V, Rizzu P, Squitieri F et al (2003) DJ-1 (PARK7), a novel gene for autosomal recessive, early onset parkinsonism. Neurol Sci 24, 159-160   DOI
21 Koroglu C, Baysal L, Cetinkaya M, Karasoy H and Tolun A (2013) DNAJC6 is responsible for juvenile parkinsonism with phenotypic variability. Parkinsonism Relat Disord 19, 320-324   DOI
22 Quadri M, Fang M, Picillo M et al (2013) Mutation in the SYNJ1 Gene Associated with Autosomal Recessive, Early-Onset P arkinsonism. Hum Mutat 34, 1208-1215   DOI
23 Ramirez A, Heimbach A, Grundemann J et al (2006) Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 38, 1184-1190   DOI
24 Greenamyre JT and Hastings TG (2004) Parkinson's--divergent causes, convergent mechanisms. Science 304, 1120-1122   DOI
25 Bilen J and Bonini NM (2005) Drosophila as a model for human neurodegenerative disease. Annu Rev Genet 39, 153-171   DOI
26 Feany MB and Bender WW (2000) A Drosophila model of Parkinson's disease. Nature 404, 394-398   DOI
27 Pareek G, Thomas RE and Pallanck LJ (2018) Loss of the Drosophila m-AAA mitochondrial protease paraplegin results in mitochondrial dysfunction, shortened lifespan, and neuronal and muscular degeneration. Cell Death Dis 9, 304   DOI
28 Kroemer G, Galluzzi L and Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87, 99-163   DOI
29 Mosharov EV, Larsen KE, Kanter E et al (2009) Interplay between cytosolic dopamine, calcium, and ${\alpha}$-synuclein causes selective death of substantia nigra neurons. Neuron 62, 218-229   DOI
30 Kann O and Kovacs R (2007) Mitochondria and neuronal activity. Am J Physiol Cell Physiol 292, C641-C657   DOI
31 Dehay B, Bourdenx M, Gorry P et al (2015) Targeting ${\alpha}$-synuclein for treatment of Parkinson's disease: mechanistic and therapeutic considerations. Lancet Neurol 14, 855-866   DOI
32 Blum D, Torch S, Lambeng N et al (2001) Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease. Prog Neurobiol 65, 135-172   DOI
33 Perier C, Bove J, Wu D-C et al (2007) Two molecular pathways initiate mitochondria-dependent dopaminergic neurodegeneration in experimental Parkinson's disease. Proc Natl Acad Sci U S A 104, 8161-8166   DOI
34 Abou-Sleiman PM, Muqit MM and Wood NW (2006) Expanding insights of mitochondrial dysfunction in Parkinson's disease. Nat Rev Neurosci 7, 207-219   DOI
35 Trushina E and McMurray C (2007) Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Neuroscience 145, 1233-1248   DOI
36 Blesa J and Przedborski S (2014) Parkinson's disease: animal models and dopaminergic cell vulnerability. Front Neuroanat 8, 155   DOI
37 Mizuno Y, Sone N and Saitoh T (1987) Effects of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine and 1-methyl-4-phenylpyridinium ion on activities of the enzymes in the electron transport system in mouse brain. J Neurochem 48, 1787-1793   DOI
38 Norris KL, Hao R, Chen L-F et al (2015) Convergence of parkin, PINK1 and ${\alpha}$-synuclein on stress-induced mitochondrial morphological remodelling. J Neurochem 290, 13862-13874
39 Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV and Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci 3, 1301-1306   DOI
40 Lee K-S, Huh S, Lee S et al (2018) Altered ER-mitochondria contact impacts mitochondria calcium homeostasis and contributes to neurodegeneration in vivo in disease models. Proc Natl Acad Sci U S A 115, E8844-E8853   DOI
41 Ludtmann MH, Angelova PR, Horrocks MH et al (2018) ${\alpha}$-synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson's disease. Nat Commun 9, 2293   DOI
42 Blandini F and Armentero MT (2012) Animal models of Parkinson's disease. FEBS J 279, 1156-1166   DOI
43 Chen AY, Xia S, Wilburn P and Tully T (2014) Olfactory deficits in an alpha-synuclein fly model of Parkinson's disease. PLoS One 9, e97758   DOI
44 Khair A, Salema B, Dhanushkodi NR et al (2018) Silencing of Glucocerebrosidase Gene in Drosophila Enhances the Aggregation of Parkinson's Disease Associated ${\alpha}$-Synuclein Mutant A53T and Affects Locomotor Activity. Front Neurosci 12, 81   DOI
45 Davis MY, Trinh K, Thomas RE et al (2016) Glucocerebrosidase deficiency in Drosophila results in ${\alpha}$-synucleinindependent protein aggregation and neurodegeneration. PLoS Genet 12, e1005944   DOI
46 Greene JC, Whitworth AJ, Kuo I, Andrews LA, Feany MB and Pallanck LJ (2003) Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci U S A 100, 4078-4083   DOI
47 Miura E, Hasegawa T, Konno M et al (2014) VPS35 dysfunction impairs lysosomal degradation of ${\alpha}$-synuclein and exacerbates neurotoxicity in a Drosophila model of Parkinson's disease. Neurobiol Dis 71, 1-13   DOI
48 Suzuki M, Fujikake N, Takeuchi T et al (2015) Glucocerebrosidase deficiency accelerates the accumulation of proteinase K-resistant ${\alpha}$-synuclein and aggravates neurodegeneration in a Drosophila model of Parkinson's disease. Hum Mol Genet 24, 6675-6686   DOI
49 Devi L, Raghavendran V, Prabhu BM, Avadhani NG and Anandatheerthavarada HK (2008) Mitochondrial import and accumulation of ${\alpha}$-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 283, 9089-9100   DOI
50 Park J, Kim SY, Cha G-H, Lee SB, Kim S and Chung J (2005) Drosophila DJ-1 mutants show oxidative stress-sensitive locomotive dysfunction. Gene 361, 133-139   DOI
51 Cha G-H, Kim S, Park J et al (2005) Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophila. Proc Natl Acad Sci U S A 102, 10345-10350   DOI
52 Lehmann S, Jardine J, Garrido-Maraver J, Loh SH and Martins LM (2017) Folinic acid is neuroprotective in a fly model of Parkinson's disease associated with pink1 mutations. Matters 3, e201702000009
53 Moisoi N, Fedele V, Edwards J and Martins LM (2014) Loss of PINK1 enhances neurodegeneration in a mouse model of Parkinson's disease triggered by mitochondrial stress. Neuropharmacology 77, 350-357   DOI
54 Narendra D, Tanaka A, Suen D-F and Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183, 795-803   DOI
55 Clark IE, Dodson MW, Jiang C et al (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441, 1162   DOI
56 Park J, Lee SB, Lee S et al (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441, 1157   DOI
57 Clark IE, Dodson MW, Jiang C et al (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441, 1162-1166   DOI
58 Kim Y, Park J, Kim S et al (2008) PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. Biochem Biophys Res Commun 377, 975-980   DOI
59 Hayashi T, Ishimori C, Takahashi-Niki K et al (2009) DJ-1 binds to mitochondrial complex I and maintains its activity. Biochem Biophys Res Commun 390, 667-672   DOI
60 Zhang L, Shimoji M, Thomas B et al (2005) Mitochondrial localization of the Parkinson's disease related protein DJ-1: implications for pathogenesis. Hum Mol Genet 14, 2063-2073   DOI
61 Yang Y, Gehrke S, Imai Y et al (2006) Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc Natl Acad Sci U S A 103, 10793-10798   DOI
62 Heo JY, Park JH, Kim SJ et al (2012) DJ-1 null dopaminergic neuronal cells exhibit defects in mitochondrial function and structure: involvement of mitochondrial complex I assembly. PLoS One 7, e32629   DOI
63 Irrcher I, Aleyasin H, Seifert E et al (2010) Loss of the Parkinson's disease-linked gene DJ-1 perturbs mitochondrial dynamics. Hum Mol Genet 19, 3734-3746   DOI
64 Lucas JI and Marin I (2006) A new evolutionary paradigm for the Parkinson disease gene DJ-1. Mol Biol Evol 24, 551-561   DOI
65 Menzies FM, Yenisetti SC and Min K-T (2005) Roles of Drosophila DJ-1 in survival of dopaminergic neurons and oxidative stress. Curr Biol 15, 1578-1582   DOI
66 Meulener M, Whitworth AJ, Armstrong-Gold CE et al (2005) Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson's disease. Curr Biol 15, 1572-1577   DOI
67 Meulener MC, Xu K, Thomson L, Ischiropoulos H and Bonini NM (2006) Mutational analysis of DJ-1 in Drosophila implicates functional inactivation by oxidative damage and aging. Proc Natl Acad Sci U S A 103, 12517-12522   DOI
68 Poudel S and Lee Y (2018) Impaired Taste Associative Memory and Memory Enhancement by Feeding Omija in Parkinson's Disease Fly Model. Mol Cells 41, 646-652   DOI
69 Wallings R, Manzoni C and Bandopadhyay R (2015) Cellular processes associated with LRRK2 function and dysfunction. FEBS J 282, 2806-2826   DOI
70 Karuppagounder SS, Xiong Y, Lee Y et al (2016) LRRK2 G2019S transgenic mice display increased susceptibility to 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-mediated neurotoxicity. J Chem Neuroanat 76, 90-97   DOI
71 Liu Z, Wang X, Yu Y et al (2008) A Drosophila model for LRRK2-linked parkinsonism. Proc Natl Acad Sci U S A 105, 2693-2698   DOI
72 Abolaji AO, Adedara AO, Adie MA, Vicente-Crespo M and Farombi EO (2018) Resveratrol prolongs lifespan and improves 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridineinduced oxidative damage and behavioural deficits in Drosophila melanogaster. Biochem Biophys Res Commun 503, 1042-1048   DOI
73 Yang D, Thomas JM, Li T, Lee Y, Liu Z and Smith W (2017) Drosophila hep pathway mediates Lrrk2-induced neurodegeneration. Biochem Cell Biol 96, 441-449   DOI
74 Schober A (2004) Classic toxin-induced animal models of Parkinson's disease: 6-OHDA and MPTP. Cell Tissues Res 318, 215-224   DOI
75 Tieu K (2011) A guide to neurotoxic animal models of Parkinson's disease. Cold Spring Harb Perspect Med 1, a009316   DOI
76 Trinh K, Andrews L, Krause J et al (2010) Decaffeinated coffee and nicotine-free tobacco provide neuroprotection in Drosophila models of Parkinson's disease through an NRF2-dependent mechanism. J Neurosci 30, 5525-5532   DOI
77 Srivastava P and Panda D (2007) Rotenone inhibits mammalian cell proliferation by inhibiting microtubule assembly through tubulin binding. FEBS J 274, 4788-4801   DOI
78 Sherer TB, Betarbet R, Testa CM et al (2003) Mechanism of toxicity in rotenone models of Parkinson's disease. J Neurosci 23, 10756-10764   DOI
79 Vos M, Esposito G, Edirisinghe JN et al (2012) Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency. Science 336, 1306-1310   DOI
80 Mena MA, Casarejos MJ, Solano RM and de Yebenes JG (2009) Half a century of L-DOPA. Curr Top Med Chem 9, 880-893
81 Payami H and Factor SA (2014) Promise of pharmacogenomics for drug discovery, treatment and prevention of Parkinson's disease. A perspective. Neurotherapeutics 11, 111-116   DOI
82 Dalfo E, Gomez-Isla T, Rosa J et al (2004) Abnormal ${\alpha}$-synuclein interactions with Rab proteins in ${\alpha}$-synuclein A30P transgenic mice. J Neuropathol Exp Neuron 63, 302-313   DOI
83 Saini N and Schaffner W (2010) Zinc supplement greatly improves the condition of parkin mutant Drosophila. Biol Chem 391, 513-518   DOI
84 Guo J, Cui Y, Liu Q et al (2018) Piperine ameliorates SCA17 neuropathology by reducing ER stress. Mol Neurodegener 13, 4   DOI
85 Lee MK, Stirling W, Xu Y et al (2002) Human ${\alpha}$-synuclein-harboring familial Parkinson's disease-linked Ala-53$\rightarrow$ Thr mutation causes neurodegenerative disease with ${\alpha}$-synuclein aggregation in transgenic mice. Proc Natl Acad Sci U S A 99, 8968-8973   DOI
86 Lu X-H, Fleming SM, Meurers B et al (2009) Bacterial artificial chromosome transgenic mice expressing a truncated mutant Parkin exhibit age-dependent hypokinetic motor deficits, dopaminergic neuron degeneration, and accumulation of proteinase K-resistant ${\alpha}$-synuclein. J Neurosci 29, 1962-1976   DOI
87 Gasser T (2001) Genetics of Parkinson's disease. J neurol 248, 833-840   DOI
88 Kumar R, Jangir DK, Verma G et al (2017) S-nitrosylation of UCHL1 induces its structural instability and promotes ${\alpha}$-synuclein aggregation. Sci Rep 7, 44558   DOI
89 Tran HH, Dang SN, Nguyen TT et al (2018) Drosophila Ubiquitin C-Terminal Hydrolase Knockdown Model of Parkinson's Disease. Sci Rep 8, 4468   DOI
90 Kelm-Nelson CA, Brauer AF, Barth KJ et al (2018) Characterization of early-onset motor deficits in the Pink1-/- mouse model of Parkinson disease. Brain Res 1680, 1-12   DOI
91 Usenovic M, Tresse E, Mazzulli JR, Taylor JP and Krainc D (2012) Deficiency of ATP13A2 leads to lysosomal dysfunction, ${\alpha}$-synuclein accumulation, and neurotoxicity. J Neurosci 32, 4240-4246   DOI
92 Cornelissen T, Vilain S, Vints K, Gounko N, Verstreken P and Vandenberghe W (2018) Deficiency of parkin and PINK1 impairs age-dependent mitophagy in Drosophila. eLife 7, e35878   DOI
93 Rousseaux MW, Marcogliese PC, Qu D et al (2012) Progressive dopaminergic cell loss with unilateral-to-bilateral progression in a genetic model of Parkinson disease. Proc Natl Acad Sci U S A 109, 15918-15923   DOI
94 Li Y, Liu W, Oo TF et al (2009) Mutant LRRK2 R1441G BAC transgenic mice recapitulate cardinal features of Parkinson's disease. Nat Neurosci 12, 826-828   DOI
95 Giovannone B, Tsiaras WG, de la Monte S et al (2009) GIGYF2 gene disruption in mice results in neurodegeneration and altered insulin-like growth factor signaling. Hum Mol Genet 18, 4629-4639   DOI
96 Kim M, Semple I, Kim B et al (2015) Drosophila Gyf/GRB10 interacting GYF protein is an autophagy regulator that controls neuron and muscle homeostasis. Autophagy 11, 1358-1372   DOI
97 Martins LM, Morrison A, Klupsch K et al (2004) Neuroprotective role of the Reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice. Mol Cell Biol 24, 9848-9862   DOI
98 Tain LS, Chowdhury RB, Tao RN et al (2009) Drosophila HtrA2 is dispensable for apoptosis but acts downstream of PINK1 independently from Parkin. Cell Death Differ 16, 1118-1125   DOI
99 Zhou Q, Yen A, Rymarczyk G et al (2016) Impairment of PARK14-dependent Ca 2+ signalling is a novel determinant of Parkinson's disease. Nat Commun 7, 10332   DOI