• Title/Summary/Keyword: cathode water

Search Result 288, Processing Time 0.026 seconds

Hydrogen Production from Anodized Tubular $TiO_2$ Electrode and Immobilized cross-linked P. furiosus (양극산화 $TiO_2$ 전극과 cross-linked P. furiosus 활용 물분해 수조제조)

  • Yoon, Jae-Kyung;Park, Min-Sung;Her, Ah-Young;Shim, Eun-Jung;Joo, Hyun-Ku
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.749-752
    • /
    • 2009
  • Anodized tubular titania ($TiO_2$) electrodes (ATTEs) are prepared and used as both the photoanode and the cathode substrate in a photoelectrochemical system designed to split water into hydrogen with the assistance of an enzyme and an external bias (solar cell). In particular, the ATTE used as the cathode substrate for the immobilization of the enzyme is prepared by two methods; adsorption and crosslinking. Results show that the optimized amount of enzyme is 10.98 units for the slurried enzyme, 3.66 units for the adsorbed one and 7.32 units for the crosslinked one, and the corresponding hydrogen evolution rates are 33.04, 148.58, and 234.88 umol/hr, respectively. The immobilized enzyme, specifically the chemically crosslinked one, seems to be much superior to the slurried enzyme, due to the enhanced charge-transfer process that is caused by the lower electrical resistance between the enzyme and the ATTE. This results in a greater number of accepted electrons and a larger amount of enzymes able to deal with the electrons.

  • PDF

Numerical Simulation of the Oscillating Flow Effect in the Channel of Polymer Electrolyte Membrane Fuel Cell (왕복 유동을 통한 확산증대 효과가 연료전지 성능에 미치는 영향에 대한 수치해석)

  • Kim, Jongmin;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.20 no.4
    • /
    • pp.7-13
    • /
    • 2018
  • This study investigates the enhancement of the oxygen diffusion rate in the cathode channel of a proton exchange membrane fuel cell (PEMFC) by pure oscillating flow, which is the same as the mechanism of human breathe. Three-dimensional numerical simulation, which has the full model of the fuel cell including electrochemical reaction, ion and electronic conduction, mass transfer and thermal variation and so on, is performed to show the phenomena in the channel at the case of a steady state. This model could analysis the oscillating flow as a moving mesh calculation coupled with electrochemical reaction on the catalyst layer, however, it needs a lot of calculation time for each case. The two dimensional numerical simulation has carried on for the study of oscillating flow effect in the cathode channel of PEMFC in order to reduce the calculation time. This study shows the diffusion rate of the oxygen increased and the emission rate of the water vapor increased in the channel by oscillating flow without any forced flow.

Study on Flooding Phenomena at Various Stoichiometries in Transparent PEM Unit Fuel Cell (PEM 단위 연료전지 가시화 셀을 이용한 당량비 변화에 따른 플러딩 현상에 관한 연구)

  • Nam, Ki-Hoon;Byun, Jae-Ki;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.6
    • /
    • pp.625-632
    • /
    • 2012
  • The objective of this paper is to demonstrate the cathode channel flooding effects at different stoichiometries in proton exchange membrane (PEM) fuel cells by using visualization techniques. The phenomena of liquid water formation and removal caused by current variations were also examined experimentally. Tests were conducted at cathode stoichiometries of 1.5 and 2.0, and the anode stoichiometry was fixed at 1.5. It is found that at an air-side stoichiometry of 2.0, liquid water begins to form and the flooding occurs faster than at an air-side stoichiometry of 1.5. Also, when the air-side stoichiometry of 1.5 is maintained, the dry-out phenomena is observed in the dry-out area 7.8 A following the field of flooding. Thus, a stoichiometry of 1.5 produced better performance in terms of membrane electrode assembly (MEA) durability and hydrogen ion conductivity than did a stoichiometry of 2.0, in which dry-out occurs beyond 8A.

Comparison of Electricity Generation Efficiencies depending on the Reactor Configurations in Microbial Fuel Cells (미생물 연료 전지의 반응조 형상에 따른 전기 생산효율 비교)

  • Lee, Yunhee;Oa, Seong-Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.681-686
    • /
    • 2010
  • Two different MFC designs were evaluated in batch mode: single compartment combined membrane-electrodes (SCME) design and twin-compartment brush-type anode electrodes (TBE) design (single chamber with two air cathodes and brush anodes at each side of the reactor). In SCME MFC, carbon anode and cathode electrodes were assembled with a proton exchange membrane (PEM). TBE MFC was consisted of brush-type anode and carbon cloth cathode electrodes without the PEM. A brush-type anode was fabricated with carbon fibers and was placed close to the cathode electrode to reduce the internal resistance. Substrates used in this study were glucose, leachate from cattle manure, or sucrose at different concentrations with phosphate buffer solution (PBS) of 200 mM to increase the conductivity thereby reduce the internal resistance. Hydrogen generating bacteria (HGB) were only inoculated in TBE MFC. The peak power densities ($P_{peak}$) produced from the SCME systems fed with glucose and leachate were 18.8 and $28.7mW/m^2$ at external loads of 1000 ohms, respectively. And the $P_{peak}$ produced from TBE MFC were 40.1 and $18.3mW/m^2$ at sucrose concentration of 5 g/L and external loads of 470 ohms, with a mediator (2-hydroxy-1, 4-naphthoquinone) and without the mediator, respectively. The maximum power density ($P_{max}$) produced from mediator present TBE MFC was $115.3mW/m^2$ at 47 ohms of an external resistor.

The Characteristics of Vanadium based Composite Cathode for Lithium Secondary Battery (리튬이차전지용 바나듐계 복합양극의 특성)

  • Kim Jong-Jin;Son Won-Keun;Kim Jae-Yong;Park Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.2
    • /
    • pp.61-65
    • /
    • 1999
  • A new treatment of $LiV_3O_8$ has been proposed for improving its electrochemical behavior as a cathode material for secondary lithium batteries. Lithium trivanadate, $LiV_3O_8$, can be prepared in a finely dispersed form by dehydration of aqueous lithium trivanadate gels. The ultrasonic treatment method for Liv30s has been examined in comparison with $LiV_3O_8$ prepared by solutionmethod. The ultrasonically treated products in water were characterized by XRD (X-ray diffractometry), TGA (thermogravimetric analysis) and SEM (scanning electron microscopy). These measurements showed that the ultrasonic treatment process of aqueous $LiV_3O_8$ caused a decrease in crytallinity and considerable increased in specific surface area and interlayer spacing. The product, ultrasonically treated in water for 2 h, showed a high initial discharge capacity and was charge-discharge cycled without large capacity loss. The ultrasonic treated Liv30s can improve not only the specific capacity, but also the cycling behavior

An Electro-Fenton System Using Magnetite Coated One-body Catalyst as an Electrode (일체형 산화철 촉매를 전극으로 하는 전기펜톤산화법)

  • Choe, Yun Jeong;Ju, Jeh Beck;Kim, Sang Hoon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.117-121
    • /
    • 2018
  • A stainless steel mesh was applied to the cathode of an electro-Fenton system. Methylene blue (MB) solution was chosen as the model waste water with non-biodegradable pollutants. For the model waste water, the degradation efficiency was compared among various SUS mesh cathodes with different surface treatments and magnetite coatings on them. With increasing amount of the magnetite coating on SUS mesh, the degradation efficiency also increased. The improved electro-catalytic characteristic was explained by the increased amount of in situ generated hydrogen peroxide near the cathode surface. Cyclic voltammetry data also showed improved electro-catalytic performance for SUS mesh with more magnetite coatings on them.

Observation of Water Consumption in Zn-air Secondary Batteries

  • Yang, Soyoung;Kim, Ketack
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.381-386
    • /
    • 2019
  • Zn-air battery uses oxygen from the air, and hence, air holes in it are kept open for cell operation. Therefore, loss of water by evaporation through the holes is inevitable. When the water is depleted, the battery ceases to operate. There are two water consumption routes in Zn-air batteries, namely, active path (electrolysis) and passive path (evaporation and corrosion). Water loss by the active path (electrolysis) is much faster than that by the passive path during the early stage of the cycles. The mass change by the active path slows after 10 h. In contrast, the passive path is largely constant, becoming the main mass loss path after 10 h. The active path contributes to two-thirds of the electrolyte consumption in 24 h of cell operation in 4.0 M KOH. Although water is an important component for the cell, water vapor does not influence the cell operation unless the water is nearly depleted. However, high oxygen concentration favors the discharge reaction at the cathode.

Preparation and electrochemical property of $LiMn_2O_4$cathode active material by Sol-Gel method using water as solvent (물을 용매로 이용한 Sol-Ge1법에 의한 $LiMn_2O_4$ 정극 활물질의 제조와 전기화학적 특성)

  • 정인성;구할본;박계춘
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.175-178
    • /
    • 1998
  • LiMn$_2$O$_4$-based spinels has been studied extensively as positive electrode materials for rechargeable lithium and lithium ion batteries. We describe here that LiMn$_2$O$_4$ cathode active materials is preparated by sol-gel process using water as solvent, which often yields inorganic oxides of excellent phase purity and well-controlled stoichiometry. Using this process, it has been possible to synthesize phase-pure crystalline spinel LiMn$_2$O$_4$ by calcining the appropriate precursors in air at 80$0^{\circ}C$ for several hours. The influence of different time have also been explored. LiMn$_2$O$_4$ preparated in the present study exhibit the single phase of cubic and active reaction at 400 ~ $600^{\circ}C$. Electrochemical studies show that the this method- synthesized materials appear to present reversible oxidation and reduction reactions at 3.0V ~ 4.5V and cycle stability during 50 cycle.

  • PDF

토양환경복원과 관련 동전기 기술의 적용에 대한 저항상태에 따른 전기삼투량 변화의 이해

  • 양지원;김상준;박지연;이유진;기대정
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.330-333
    • /
    • 2003
  • Recently electrokinetic process is known to be a promising remediation technology for the contaminated soils with heavy metals, radionuclides, organic matters, and so on. The contaminants in electrokinetic technology are removed mainly by three mechanisms; electroosmosis, electromigration, and electrophoresis. When direct current is introduced between two electrodes planted in soil, a large amount of hydrogen ions is formed and moves from anode to cathode with the other cations contained in electrolyte. The water flow caused by tile movement of cations is called as electroosmosis. Especially for non-ionic pollutants, the electroosmotic flow(EOF) is the most important removal mechanism among them and transports contaminants from anode to cathode along the water flow. In this study, characteristics of electroosmotic flow was investigated according to the resistance state of soil. The decrease, maintenance, and increase of soil resistance could be obtained by controlling ions in soil. When the resistance of soil was decreasing or maintained, the EOF is proportional to electric current and voltage, respectively and when the resistance was increasing, the EOF is proportional to only electric current not voltage.

  • PDF

Numerical Modeling of Current Density and Water Behavior at a Designated Cross Section of the Gas Diffusion Layer in a Proton Exchange Membrane Fuel Cell (고분자전해질 연료전지의 동작압력에 대한 가스 확산층의 위치 별 전류밀도 및 수분거동에 대한 수치해석)

  • Kang, Sin-Jo;Kim, Young-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.161-170
    • /
    • 2012
  • There are many factors to consider when attempting to improve the efficiency of fuel cell operation, such as the operation temperature, humidity, stoichiometry, operation pressure, geometric features, etc. In this paper, the effects of the operation pressure were investigated to find the current density and water saturation behavior on a cross section designated by the design geometry. A two-dimensional geometric model was established with a gas channel that can provide $H_2$ to the anode and $O_2$ and water vapor to the cathode gas diffusion layer (GDL). The results from this numerical modeling revealed that higher operation pressures would produce a higher current density than lower ones, and the water saturation behavior was different at operation pressures of 2 atm and 3 atm in the cathode GDL. In particular, the water saturation ratios are higher directly below the collector than in other areas. In addition, this paper presents the dependence of the velocity behavior in the cathode on pressure changes, and the velocity fluctuations through the GDL are higher in the output area than in inlet area. This conclusion will be utilized to design more efficient fuel cell modeling of real fuel cell operation.