• Title/Summary/Keyword: catchment

Search Result 703, Processing Time 0.032 seconds

Impact of Different Green-Ampt Model Parameters on the Distributed Rainfall-Runoff Model FLO-2D owing to Scale Heterogeneity (분포형 강우-유출 모형에서 토양도 격자크기 효과가 Green-Ampt 모형의 매개변수와 모의된 강우손실에 미치는 영향)

  • Hwang, Ji-hyeong;Lee, Khil-Ha
    • Journal of Environmental Science International
    • /
    • v.29 no.1
    • /
    • pp.15-23
    • /
    • 2020
  • The determination of soil characteristics is important in the simulation of rainfall runoff using a distributed FLO-2D model in catchment analysis. Digital maps acquired using remote sensing techniques have been widely used in modern hydrology. However, the determination of a representative parameter with spatial scaling mismatch is difficult. In this investigation, the FLO-2D rainfall-runoff model is utilized in the Yongdam catchment to test sensitivity based on three different methods (mosaic, arithmetic, and predominant) that describe soil surface characteristics in real systems. The results show that the mosaic method is costly, but provides a reasonably realistic description and exhibits superior performance compared to other methods in terms of both the amount and time to peak flow.

A Comprehensive Rainfall/Run-off Model for Upland Catchment Area. (산간유역에서의 강우량/유출량에 관한 종합 Model해석)

  • 홍진정
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.20 no.3
    • /
    • pp.4724-4731
    • /
    • 1978
  • Using hydrometric data from an upland river in North Wales, a relationship between rate of river flow and water stored within the catchment area (catchment storage) is assumed to exist, and is evaluated from an analysis of winter recession curves. This storage/river flow relationship, when combined with water balance equations, produces a set of equations which may be used for "routing" input of rainfall through a storage with defined outflow characteristics, providing a straightforward method of flood prediction and analysis from rainfall data. Recorded and predicted flood hydrographs are compared, and the effectiveness and limitations of the method are considered. The development of a complete mathematical model, embodying the storage/river flow relationship, and suitable for generation of continuous run-off records from rainfall and evaporation data, is also considered.

  • PDF

Trace elements in the rainwater runoff of the urban catchment of Guwahati, India

  • Devi, Upama;Bhattacharyya, Krishna G.
    • Advances in environmental research
    • /
    • v.2 no.2
    • /
    • pp.99-118
    • /
    • 2013
  • Rainwater runoff has been identified as a significant source of contaminants having tremendous impact on the receiving aquatic environment. In the present study, trace element transport by the surface runoff in the predominantly urban catchment of Guwahati city, India was monitored with a view to determine the chemical denudation rates of the land surface. A number of trace metals, namely Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn were measured in the runoff after 70 major rain events within the city. Cadmium was found to be the least abundant metal and Iron was the most abundant metal in the runoff. The results are interpreted on the basis of temporal and spatial variations in their concentrations. These variations are quite large in some of the events and reflect changes in the local environmental setting, differences in water utilization, variations in runoff volume, gradient and quality.

A gravity Model For The Catchments Between Parks (도시 근린공원간의 포착력에 대한 동력모형검증)

  • 권상준;심경구
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.21 no.2
    • /
    • pp.1-7
    • /
    • 1993
  • This study suggests one hypothesis: The strength between the catchment foreces of urban community parks can be represented to a gravity model. The gravity model is derived from the related of two subjects, witch is related with their distance. A grvity model for the catchments between parks is represented as followed formula: Iij=${\alpha}$${\times}$ $\frac{Pi$.$Pj}{${\beta}$r}$(formula) Here, Iij is a total number of the vistors of park i and j in a year. Pi is population of the catchment area of park i. Pj is population of the catchment area of park j. ${\alpha}$and, ${\beta}$ are parameters. This formula is testified in the case of Chong-ju community parks.

  • PDF

An Analysis of First Flush Phenomenon of 3 Catchment area in Lake Sihwa Watershed during Rainfall-Runoff Events (강우유출수 영향에 따른 시화호 소유역별 유입하천의 오염물질 초기유출현상 분석)

  • Kim, Sea-Won;Oh, Jong-Min
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.475-485
    • /
    • 2011
  • Lake Sihwa has a very unique watershed environment, surrounded by industrial, urban and rural catchment area with different land use. The first flush phenomenon was investigated in 3 catchment area. 4TG, representing the industrial area, shows rapid discharges of highly concentrated pollutants during the early stages of a storm and it is indicating a strong first flush effect. At AS, representing the urban area, the pollutant concentration reached its peak approximately 2~3 hours after the start of storm, which is a strong first flush effect did not appear. JJB and MS represent the rural areas, the PEMC analysis results suggest that highly concentrated pollutants were discharged during the middle and latter stages of a storm, instead of early pollutant runoff due to the effects of rainwater runoff.

Assessment of Improving SWAT Weather Input Data using Basic Spatial Interpolation Method

  • Felix, Micah Lourdes;Choi, Mikyoung;Zhang, Ning;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.368-368
    • /
    • 2022
  • The Soil and Water Assessment Tool (SWAT) has been widely used to simulate the long-term hydrological conditions of a catchment. Two output variables, outflow and sediment yield have been widely investigated in the field of water resources management, especially in determining the conditions of ungauged subbasins. The presence of missing data in weather input data can cause poor representation of the climate conditions in a catchment especially for large or mountainous catchments. Therefore, in this study, a custom module was developed and evaluated to determine the efficiency of utilizing basic spatial interpolation methods in the estimation of weather input data. The module has been written in Python language and can be considered as a pre-processing module prior to using the SWAT model. The results of this study suggests that the utilization of the proposed pre-processing module can improve the simulation results for both outflow and sediment yield in a catchment, even in the presence of missing data.

  • PDF

Estimation of Structural Deterioration of Sewer using Markov Chain Model (마르코프 연쇄 모델을 이용한 하수관로의 구조적 노후도 추정)

  • Kang, Byong Jun;Yoo, Soon Yu;Zhang, Chuanli;Park, Kyoo Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.421-431
    • /
    • 2023
  • Sewer deterioration models can offer important information on prediction of future condition of the asset to decision makers in their implementing sewer pipe networks management program. In this study, Markov chain model was used to estimate sewer deterioration trend based on the historical structural condition assessment data obtained by CCTV inspection. The data used in this study were limited to Hume pipe with diameter of 450 mm and 600 mm in three sub-catchment areas in city A, which were collected by CCTV inspection projects performed in 1998-1999 and 2010-2011. As a result, it was found that sewers in sub-catchment area EM have deteriorated faster than those in other two sub-catchments. Various main defects were to generate in 29% of 450 mm sewers and 38% of 600 mm in 35 years after the installation, while serious failure in 62% of 450 mm sewers and 74% of 600 mm in 100 years after the installation in sub-catchment area EM. In sub-catchment area SN, main defects were to generate in 26% of 450 mm sewers and 35% of 600 mm in 35 years after the installation, while in sub-catchment area HK main defects were to generate in 27% of 450 mm sewers and 37% of 600 mm in 35 years after the installation. Larger sewer pipes of 600 mm were found to deteriorate faster than smaller sewer pipes of 450 mm by about 12 years. Assuming that the percentage of main defects generation could be set as 40% to estimate the life expectancy of the sewers, it was estimated as 60 years in sub-catchment area SN, 42 years in sub-catchment area EM, 59 years in sub-catchment area HK for 450 mm sewer pipes, respectively. For 600 mm sewer pipes, on the other hand, it was estimated as 43 years, 34 years, 39 years in sub-catchment areas SN, EM, and HK, respectively.

Implementation of a Weather Hazard Warning System at a Catchment Scale (집수역 규모 기상위험 경보체계 구축)

  • Park, Ju Hyun;Kim, Seong Kee;Shin, Yong Soon;Ahn, Mun Il;Han, Yong Kyu
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.389-395
    • /
    • 2014
  • This technical note describes about the base stages of technology implementation for establishing "Early Warning System for Weather Hazard Management in Climate-smart Agriculture" to national onsite service. First of all, a special weather report service at catchment was represented sequential risk of 810 units of catchment by spatial statistical methods to existing 150 counties units special weather report released in KMA. The second, chronic hazard alarm service based on daily data of 76 Synoptic stations was monitor about 810 Catchment of mid-long term lapse weather and represented as a relative risk index chronic hazard risk of this time in preparation for the climatological normal conditions in the same period. Finally, we establish the foundation for delivering individually calculated field specific in hazard risk about volunteer farmer of early warning service demonstration area in seomjin downstream watershed. These three types of information were built a near real-time map service on the VWORLD background map of Ministry of Land as superposed layers nationwide catchment and demonstration areas within the farm unit weather hazard.

A Study on the Critical Duration of Design Rainfall in Midsize Catchment (중규모 하천유역에서 설계강우의 임계지속기간에 관한 연구)

  • Park, Jong-Young;Shin, Chang-Dong;Lee, Jung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.9
    • /
    • pp.695-706
    • /
    • 2004
  • This study is to propose the temporal pattern of design rainfall which causes maximum peak discharge, and to analyze the relation of catchment characteristics and critical durations for gauged midsize catchment. Hydrologic analysis has done over the 44 midsize catchments with 50-5,000$\textrm{km}^2$. The type of temporal pattern of design rainfall which causes maximum peak discharge has resulted in Huff's 4 quartile distribution method for effective rainfall(AMC III) The peak discharges of 24hr rainfall duration are similar to those of critical duration for 50-600$\textrm{km}^2$, and the peak discharges of 48hr rainfall duration are similar to those of critical duration for 600-5,000$\textrm{km}^2$. Therefore, if the proper rainfall intensity formula is selected, 24hr or 48hr rainfall duration may be regarded as the critical duration of midsize catchment. A simple regression equation is derived by using a catchment area and critical duration with high correlation for the case of effective rainfall(AMC III). Therefore, it can be used to determine the critical duration of ungauged catchment with 50-5,000$\textrm{km}^2$. Also, dimensionless regression equation is derived by using characteristic values of unit hydrograph.

A proposal of unit watershed for water management based on the interaction of surface water and groundwater (지표수-지하수 연계 기반의 통합수자원 관리를 위한 단위유역 제안)

  • Kim, Gyoo-Bum;Hwang, Chan-Ik
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.spc1
    • /
    • pp.755-764
    • /
    • 2020
  • In South Korea, 850 standard watersheds and 7,807 KRF catchment areas have been used as basic maps for water resources policy establishment, however it becomes necessary to set up new standard maps with a more appropriate scale for the integrated managements of surface water-groundwater as well as water quantity-quality in the era of integrated water management. Since groundwater has a slow flow velocity and also has 3-D flow properties compared to surface water, the sub-catchment size is more effective than the regional watershed for the evaluation of surface water-groundwater interaction. The KRF catchment area, which has averagely a smaller area than the standard watershed, is similar to the sub-catchment area that generally includes the first-order or second-order tributaries. Some KRF catchment areas, which are based on the surface reach, are too small or large in a wide plain or high mountain area. Therefore, it is necessary to revise the existing KRF area if being used as a unit area for integrated management of surface-water and groundwater. A unit watershed with a KRF area of about 5 to 15 ㎢ can be effective as a basic unit for water management of local government considering a tributary composition and the location of groundwater wells, and as well it can be used as a basic tool for water demand-supply evaluation, hydrological observation system establishment, judgment of groundwater permission through a total quantity management system, pollution assessment, and prioritizing water policy, and etc.