• Title/Summary/Keyword: catalytic reactions

Search Result 361, Processing Time 0.022 seconds

Catalytic Reactivity of Transition Metal (Pd, Ni) complexes with Aminophosphines; I. Carbon-Carbon coupling reactions (Aminophosphine류가 배위된 전이금속(Pd, Ni) 착물의 촉매반응; I. 탄소-탄소 짝지움 반응)

  • Jung, Maeng-Joon;Lee, Chul-Jae;Kim, Dong-Yeub
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.1
    • /
    • pp.107-113
    • /
    • 2004
  • Several transition metal complexes, [$M(L)X_2$](M=Pd(II), Ni(II); X=CI, Br) are prepared with aminophosphine ligands such as 1,2-bis{(diphenylphosphino)amino}ethane{$Ph_2PNHCH_2CH_2NHPPh_2$}($L_1$), 1,2-bis{(diphenylphosphino)amino}propane{$Ph_2PNHCH(CH_3)CH_2NHPPh_2$}($L_2$), trans-1,2-bis{(diphenylphosphino)amino}cyclohexane{$Ph_2PNHC_6H_{10}NHPPh_2$}($L_3$) and 1,2-bis{(diphenylphosphino)amino}benzene{$Ph_2PNHC_6H_4NHPPh_2$}($L_4$). The properties of these complexes are characterized by optical spectroscopic methods including UV/vis spectroscopy, CD, IR, $^1H$- and $^{31}P-NMR$ together with conductometer and elemental analysis. All complexes are stable under atmospheric environment. Catalytic reactivity for C-C coupling between [$M(L)X_2$] and Grignard reagents(RMgX; R=phenyl, propyl, buthyl) by thermolysis were investigated utilizing GC/mass, $^1H$- and $^{13}C-NMR$. When mol scale is 1:20 at [$Pd(L)Cl_2$] and Grignard reagents, the high catalytic activity for C-C coupling is apparent. The [$M(L)X_2$](X=Cl, Br) complexes which have strong bond at M-P exhibit high yields for C-C coupling reactions. When the central metal ion is Pd(II), the high catalytic activity for C-C coupling is apparent. The complex coordinated with Br shows higher catalytic activity for C-C coupling reactions compared to Cl.

  • PDF

The Chemically Induced Hot Electron Flows on Metal-Semiconductor Schottky nanodiodes During Hydrogen Oxidation

  • Lee, Hyosun;Lee, Youngkeun;Lee, Changhwan;Kim, Sunmi;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.152-152
    • /
    • 2013
  • Mechanism of energy conversion from chemical to electrical during exothermic catalytic reactions at the metal surfaces has been a fascinating and crucial subject in heterogeneous catalysis. A metal-semiconductor Schottky nanodiode is novel device for direct detection of chemically induced hot electrons which have sufficient energy to surmount the Schottky barrier. We measured a continuous chemicurrent during the hydrogen oxidation under of 760 Torr of O2 and 6 Torr of H2 by using Pt/Si and Pt/TiO2 nanodiodes at reaction temperatures and compared the chemicurrent with the reaction turnover rate. The thermoelectric current was measured by carrying out an experiment under O2 condition for elimination of the background current. Gas chromatograph and source meter were used for measurement of the chemical turnover rate and the chemicurrent, respectively. The correlation between the chemicurrent and the chemical turnover rate under hydrogen oxidation implies how hot electrons generated on the metal surface affect hydrogen oxidation.

  • PDF

Numerical Studies on Combustion Characteristics of a Hybrid Catalytic Combustor (하이브리드 촉매 연소기의 연소특성에 관한 수치적 연구)

  • Hwang, Cheol-Hong;Jeong, Yeong-Sik;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.583-592
    • /
    • 2001
  • The combustion characteristics of the hybrid catalytic(catalytic+thermal) combustor with a lean methane-air mixture on platinum catalyst were investigated numerically using a 2-D boundary layer model with detailed homogeneous and heterogeneous chemistries. for the more accurate calculations, the actual surface site density of monolith coated with platinum was decided by the comparison with experimental data. It was found that the homogeneous reactions in the monolith had little effect on the change of temperature profile, methane conversion rate and light off location. However, the radicals such as OH and CO were produced rapidly at exit by homogeneous reactions. The effect of operation conditions such as equivalence ratio, temperature, velocity, pressure and diameter of the monolith channel at the entrance were studied. In thermal combustor, the production of N$_2$O was more dominant than that of NO due to the relative importance of the reaction N$_2$+O(+M)→N$_2$O(+M). Finally the productions of CO and NOx by amount of methane addition were studied.

Comparison of catalytic activity through gas-solid reaction models in CO2 gasification of lignite with alkali metal salts and iron sulfate (알칼리금속염과 철황산염을 촉매로 한 갈탄의 CO2 가스화반응에서 기체-고체 반응모델을 적용한 촉매활성의 비교)

  • Bungay, Vergel C.;Song, Byungho
    • Journal of Energy Engineering
    • /
    • v.23 no.1
    • /
    • pp.58-66
    • /
    • 2014
  • Catalytic gasification of a low rank coal- Inner Mongolian lignite has been carried out with carbon dioxide. The gasification reactions were performed in a thermogravimetric analyzer at temperatures of $600^{\circ}C$ to $900^{\circ}C$. The kinetic parameters were evaluated using three different gas-solids reaction models and the prediction ability of each model were compared. Among the models evaluated, the modified volumetric model was found to correlate best both the non-catalytic and catalytic gasification reactions. The theoretical models, homogeneous and shrinking-core models, were found to satisfactorily correlate gasification reactions for the non-catalytic and $FeSO_4$-catalyzed reactions. In case of alkali metal catalysts, the catalytic activity was mostly pronounced at a low temperature of $600^{\circ}C$ and observed to decrease by 50% as the temperature was increased to $700^{\circ}C$, and it remained nearly constant at temperature over $800^{\circ}C$. The order of catalytic activity was found to be: $K_2CO_3$ > $Na_2CO_3$ > $K_2SO_4$ > $FeSO_4$.

Significant Improvement of Catalytic Efficiencies in Ionic Liquids

  • Song, Choong-Eui;Yoon, Mi-Young;Choi, Doo-Seong
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.9
    • /
    • pp.1321-1330
    • /
    • 2005
  • The use of ionic liquids as reaction media can confer many advantages upon catalytic reactions over reactions in organic solvents. In ionic liquids, catalysts having polar or ionic character can easily be immobilized without additional structural modification and thus the ionic solutions containing the catalyst can easily be separated from the reagents and reaction products, and then, be reused. More interestingly, switching from an organic solvent to an ionic liquid often results in a significant improvement in catalytic performance (e.g., rate acceleration, (enantio)selectivity improvement and an increase in catalyst stability). In this review, some recent interesting results which can nicely demonstrate these positive “ionic liquid effect” on catalysis are discussed.

New Design in Homogeneous Palladium Catalysis: Study of Transformation of Group 14 Element Compounds and Development of Nanosize Palladium Catalysts

  • Tsuji, Yasushi;Fujihara, Tetsuaki
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.1902-1909
    • /
    • 2007
  • This account reports an overview of our findings in homogeneous Pd-catalyzed reactions. Herein we describe the new design in reactions of Group 14 element compounds and in homogeneous nanosize Pd catalysts. In the early stages of our study, we developed Pd-catalyzed transformations of allylic esters with disilanes, silylcyanides and acylsilanes to the corresponding silylation, cyanation and acylation products, respectively. We also developed a Pd-catalyzed three component coupling reaction of Group 14 element compounds involving 1,3-diene and acid chlorides to form β,γ-unsaturated ketone as a single product. Recently, we focus our attention on modifying the catalytic environment by nanosize Pd in order to improve the performance of Pd catalysts. These nanosystems realize efficient catalytic environment with remarkable enhancement in catalytic activity and unprecedented selectivity.

Conformational change of organic cofactor PLP is essential for catalysis in PLP-dependent enzymes

  • Ngo, Ho-Phuong-Thuy;Nguyen, Diem Quynh;Park, Hyunjae;Park, Yoon Sik;Kwak, Kiwoong;Kim, Taejoon;Lee, Jang Ho;Cho, Kyoung Sang;Kang, Lin-Woo
    • BMB Reports
    • /
    • v.55 no.9
    • /
    • pp.439-446
    • /
    • 2022
  • Pyridoxal 5'-phosphate (PLP)-dependent enzymes are ubiquitous, catalyzing various biochemical reactions of approximately 4% of all classified enzymatic activities. They transform amines and amino acids into important metabolites or signaling molecules and are important drug targets in many diseases. In the crystal structures of PLP-dependent enzymes, organic cofactor PLP showed diverse conformations depending on the catalytic step. The conformational change of PLP is essential in the catalytic mechanism. In the study, we review the sophisticated catalytic mechanism of PLP, especially in transaldimination reactions. Most drugs targeting PLP-dependent enzymes make a covalent bond to PLP with the transaldimination reaction. A detailed understanding of organic cofactor PLP will help develop a new drug against PLP-dependent enzymes.

Preparation of Graphene Based PdOx and CuOx/MnOx Nanocomposites and Their Catalytic Applications in C-C Coupling and CH3SH Decomposition Reactions

  • Lee, Gyeong-Hun;Park, Jun-Beom
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.175.2-175.2
    • /
    • 2014
  • Graphene (G) has been modified with palladium, copper, and manganese oxide nanoparticles (NPs), and their catalytic applications have been studied in C-C coupling reactions and methylmercaptan (CH3SH) decomposition reactions. In this research, graphite oxide (GO) sheets were exfoliated and oxidized from graphite powder and impregnated with metal precursors including Pd2+, Cu2+, and Mn2+. The thermal treatments of the metal impregnated GO in preferred gas environments produced Pd NPs on graphene (Pd/G), PdO NPs on GO (PdO/GO), and CuOx and MnOx NPs on graphene (CuOx/MnOx/G). In case of Pd/G and PdO/GO, the TEM images show that, although the mean size of the Pd NPs changed significantly before and after the C-C coupling reaction, that of the PdO NPs didn't, implying that the PdO/GO was superior to Pd/G in terms of the recyclability. Also, we demonstrate that the CuOx/MnOx/G exerts the excellent catalytic efficiency in CH3SH decomposition reaction comparing with conventional catalysts. The chemical and electronic structural changes were investigated using XRD and XPS.

  • PDF

Surface Catalytic Recombination in Hypersonic Flow: A Review of the Numerical Methods (극초음속 유동에서의 표면 촉매 재결합: 수치해석적 기법 리뷰)

  • Ikhyun Kim;Yosheph Yang
    • Journal of Industrial Technology
    • /
    • v.43 no.1
    • /
    • pp.33-41
    • /
    • 2023
  • This paper provides a general overview of surface catalytic recombination in hypersonic flow. The surface catalytic recombination phenomena is elaborated in terms of its general overview and numerical modeling associated with it. The general overview of the surface catalytic recombination phenomena describes the elementary surface reactions for the surface catalytic and the role of the surface catalytic recombination efficiency in the heat transfer determination. In the numerical modeling, the surface catalytic recombination is described based on the stagnation-point boundary layer analysis, and finite-rate surface reaction modeling. Throughout this overview manuscript, a general understanding of this phenomena is obtained and can be used as foundation for deeper application with the numerical computational fluid dynamics (CFD) flow solver to estimate the surface heat transfer in the hypersonic vehicles.

The Effect of Alkali Metal Ions on Reactions of 8-(5-Nitroquinolyl) 3-Furoate with Alkali Metal Ethoxides in Anhydrous Ethanol

  • Eum, Ik Hwan;Lee, Seong Eun;Min, Ji Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.7
    • /
    • pp.673-677
    • /
    • 2001
  • Pseudo-first-order rate constants have been measured spectrophotometrically for the reactions of 8-(5-nitroquinolyl) 3-furoate with alkali metal ethoxides in anhydrous ethanol. The plot of kobs vs the concentration of alkali metal ethox ides is linear for the reactions performed in the presence of a complexing agent, 18-crown-6 ether, but exhibits upward curvatures for the corresponding reactions performed in the absence of the complexing agent, indicating that the alkali metal ions in this study behave as catalysts. Second-order rate constants were determined for the reactions with dissociated free ethoxide (kEtO-) and with ion paired alkali metal ethoxides (kEtO-M + ) from ion pairing treatments. The magnitude of catalytic effect (kEtO-M + /kEtO-) was found to be 1.7, 3.4 and 2.5 for the reaction of 8-(5-nitroquinolyl) 3-furoate, while 1.4, 3.6 and 4.2 for that of 4-nitrophenyl 2-furoate, 1.8, 3.7 and 2.4 for that of 8-(5-nitroquinolyl) benzoate, and 2.0, 9.8 and 9.3 for that of 8-(5-nitroquinolyl) 2-furoate with EtO- Li+ , EtO- Na+ and EtO- K+ , respectively. A 5-membered chelation at the leaving group is suggested to be responsible for the catalytic effect shown by alkali metal ions.