• 제목/요약/키워드: catalytic hydrolysis

검색결과 159건 처리시간 0.037초

Catalytic Effect of $MO_4^{2-_4}$ (M=Cr, Mo and W) on Hydrolyses of Carbon and Phosphorus Esters

  • 안병태;박희선;이은주;엄익환
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권9호
    • /
    • pp.905-908
    • /
    • 2000
  • Second-order rate constants have been measured spectrophotometrically for the hydrolysis of p-nitrophenyl ac-etate (PNPA) and p-nitrophenyl diphenylphosphinate (PNPDPP) with MO42- (M = Cr, Mo and W) in phos-phate buffer (pH = 8.00) at 35.0 $^{\circ}C.$ Thes e MO42- species exhibit large catalytic effect in the hydrolysis of PNPA and PNPDPP except WO42- in the reaction with PNPA. The catalytic effect of these MO42- species has been observed to be much more significantin the hydrolysis of PNPDPP than in the hydrolysis of PNPA. Since the smallest CrO42-would be most highly solvated by H2O molecules, CrO42- is expected to exhibit the least catalytic effect, if solvation effect is the most important factor. However, in fact, CrO42- shows the highest cat-alytic effect toward PNPA, indicating that solvation effect is not solely responsible for the catalytic effect. The most basic CrO42- shows the highest catalytic effect, while the least basic WO42- is least reactive toward PNPA, indicating that the basicity of MO4 2- might bean important factor. However, in the hydrolysis of PNPDPP, no correlation is observed between the basicity and catalytic effect, suggesting thatbasicity alone can not be re-sponsible for the catalytic effect shown by the MO42- species. Formation of a chelate is suggested to be respon-sible for the high catalytic effect of MO42- in the hydrolysis reaction of PNPA and PNPDPP. The formation of chelate is considered to be more suitable for the reaction with PNPDPP than with PNPA based on the larger catalytic effect observed in the reaction with PNPDPP than with PNPA.

Catalytic Hydrolysis of Phosphate Diesters as DNA Model with Tetranuclear Nickle (II) Complex

  • Sung, Nack-Do;Kim, Tae-Young
    • Journal of Applied Biological Chemistry
    • /
    • 제49권3호
    • /
    • pp.86-89
    • /
    • 2006
  • The novel tetranuclear nickel (II) complex is a high rate accelerator in promoting hydrolysis of phosphate diesters. Nickel-bound bis-nitrophenyl phosphate (BNPP) can be $10^4$ times more reactive than the unbound BNPP. The large rate of enhancements by the complex slightly under basic condition has shown high catalytic activity in phosphate diester cleavage. The bell-shaped pH-rate profile indicated that the nickel-oxide form of the tetranuclear complex or its kinetic equivalent was the active species for cleaving BNPP. The catalytic hydrolysis between tetranuclear nickel (II) complex and phosphate diester proceeds via the formation of bidentate coordination of the anionic phosphate to the Ni (II) atom. This reveals that the complex has the possibility as artificial nuclease.

Dipalmitoyl Phosphatidyl Choline Bilayer Membrane 촉매에 의한 para-Nitrophenyl Palmitate의 가수분해 반응 (Catalytic Hydrolysis of p-Nitrophenyl Palmitate in Aqueous Dipalmitoyl Phosphatidyl Choline Bilayer Membrane)

  • 김기준;이후설
    • 한국응용과학기술학회지
    • /
    • 제25권1호
    • /
    • pp.48-51
    • /
    • 2008
  • Dipalmitoyl phosphatidyl choline and p-nitrophenyl palmitate were directly sonicated in acidic water for 6 minutes to give clear stock solutions. The catalytic hydrolysis of p-nitrophenyl palmitate was studied at $30-50^{\circ}C$ in the presence of unilamellar vesicle and mixture of unilamellar and multilamellar aggregates. The difference of reaction rate between unilamellar and multilamellar was observed. The rate of unilamellar reaction compared to the rate of mixture reaction showed more catalytic effect. The phase transition temperature of vesicle was measured at $37-44^{\circ}C$.

Synthesis and Catalytic Properties of Imidazole-Functionalized Poly(propylene imine)Dendrimers

  • Baker, Lane A.;Sun, Li;Crooks, Richard M.
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권5호
    • /
    • pp.647-654
    • /
    • 2002
  • The synthesis and characterization of third- and fifth-generation poly(propylene imine) dendrimers terminated with imidazole moieties is reported. Functionalization was achieved using simple peptide coupling reagents. These materials were characte rized by MALDI-MS, NMR, and titration. The use of these endgroup-functionalized dendrimers as catalysts for the hydrolysis of 2,4-dinitrophenyl acetate is described. Molecular simulations provide a basis for interpreting the catalytic data.

Heterogeneous Catalysts for Hydrogen Generation Based on Ru-Incorporated Hydroxyapatite

  • Jaworski, Justyn Wayne;Kim, Dae-Hyun;Jung, Kyeong-Mun;Kim, So-Hue;Jeong, Jong-Ok;Jeon, Hyo-Sang;Min, Byoung-Koun;Kwon, Ki-Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.319-319
    • /
    • 2011
  • Hydrolysis of sodium borohydride provides a safe and clean approach to hydrogen generation. Having the proper catalytic support for controlling this reaction is therefore a valuable technology. Here we demonstrate the capability of hydroxyapatite as a novel catalytic support material for hydrogen generation. Aside from being inexpensive and durable, we reveal that Ru ion exchange on the HAP surface provides a highly active support for sodium borohydride hydrolysis, exemplifying a high total turnover number of nearly 24,000 mol $H_2$/ mol Ru. Moreover, we observe that the RuHAP support exhibits a high catalytic lifetime of approximately one month upon repeated exposure to $NaBH_4$ solutions. In addition to examining surface area effects, we also identified the role of complex surface morphology in enhancing hydrolysis by the catalytic transition metal covered surface. Particularly, we found that a polycrystalline RuHAP catalytic support exhibits shorter induction times for the initial bubble formation as well as increased hydrogen generation rates as compared to a single crystal supports. The independent factor of a complex surface morphology is believed to provide enhanced sites for gas release during the initial stages of the reaction. By demonstrating the ability to shorten induction time and enhance catalytic activity through changes in surface morphology and Ru content, we find it feasible to further explore this catalyst support in the construction of a practical hydrogen generator.

  • PDF

Fast and Soft Functionalization of Carbon Nanotube with -SO3H, -COOH, -OH Groups for Catalytic Hydrolysis of Cellulose to Glucose

  • Lusha, Qin;Lee, Sungho;Li, Oi Lun
    • 한국표면공학회지
    • /
    • 제53권3호
    • /
    • pp.87-94
    • /
    • 2020
  • Herein, sulfonated carbon nanotubes (CNT) have been prepared in dilute sulfuric acid (H2SO4) via a novel sulfonation approach based on gas-liquid interfacial plasma (GLIP) at room temperature. The sulfonic acid groups and total acid groups densities of CNT after GLIP treatment in 2 M H2SO4 for 45 min can reach to 0.53 mmol/g and 3.64 mmol/g, which is higher than that of sulfonated CNT prepared under 0.5 M / 1 M H2SO4. The plasma sulfonated CNT has been applied as catalysts for the conversion of microcrystalline cellulose to glucose. The effect of hydrolysis temperature and hydrolysis time on the conversion rate and product distribution have been discussed. It demonstrates that the total conversion rate of cellulose increasing with hydrolysis temperature and hydrolysis time. Furthermore, the GLIP sulfonated CNT prepared in 2 M H2SO4 for 45 min has shown high catalytic stability of 85.73 % after three cycle use.

Synthesis of the Polysaccharide, (1 $\longrightarrow$ 5)-$\alpha$-D-Ribofuranan and Its Catalytic Activities for the Hydrolysis of Phosphates and the Cleavage of Nucleic Acids

  • Han, Man-Jung;Yoo, Kyung-Soo;Kim, Young-Heui;Kim, Hong-Youb;Shin, Hyun-Joon;Chang, Ji-Young
    • Macromolecular Research
    • /
    • 제12권4호
    • /
    • pp.359-366
    • /
    • 2004
  • The polysaccharide, (1\longrightarrow5)-$\alpha$-D-ribofuranan, was synthesized by a cationic ring-opening polymerization of 1,4-anhydro-2,3-di-O-benzyl-$\alpha$-D-ribopyranose with the aid of boron trifluoride etherate and subsequent debenzylation. This polysaccharide catalyzed the hydrolysis of ethyl p-nitrophenyl phosphate, uridylyl(3'\longrightarrow5')uridine ammonium salt, and 4-tert-butylcatechol cyclic phosphate N-methyl pyridinium. The polymer also catalyzed the cleavage of nucleic acids (DNA and RNA). The hydrolysis of ethyl p-nitrophenyl phosphate in the presence of the polymer was accelerated by 1.5 ${\times}$ 10$^3$ times relative to the uncatalyzed reaction. The catalytic activity was attributable to the vic-cis-diols of the riboses being located inside the active center that is formed by polymer chain folding; these diols form hydrogen bonds with two phosphoryl oxygen atoms of the phosphates so as to activate the phosphorus atoms to be attacked by nucleophile ($H_2O$).

DNA 모델인 Bis(p-nitrophenyl)phosphate에 대한 2핵 Ni(II) 착 화합물의 촉매 가수분해 반응에서 물 분자와 금속 이온의 역할 (The Roles of Metal Ions and Water Molecules in the Hydrolysis of Bis(p-nitrophenyl)phosphate as a DNA Model Catalyzed by Dinuclear Ni(II) Complex)

  • 성낙도;윤기섭
    • Applied Biological Chemistry
    • /
    • 제48권2호
    • /
    • pp.115-119
    • /
    • 2005
  • DNA 모델 화합물인 bis(p-nitrophenyl)phosphate(BNPP)에 대한 2핵 닉켈(II) 착 화합물, ${\mu}-aquapentaaqua[{\mu}-3,6-bis(6'-methyl-2'-pyridyl)pyridazine]chlorodinickel(II)$ trichloride trihydrate(APNT)의 촉매 가수분해 반응성을 검토하였다. APNT의 산 해리 상수는 각각 $pKa_1=7.9$$pKa_2=9.6$이었으며 BNPP의 가수분해반응 결과, pH 7.0과 $50^{\circ}C$에서 무 촉매인 경우에 비하여 가수분해 속도를 약 37만 배 가량 촉진시킴을 확인하였다. 그리고 pH-rate profile로부터 실험 사실을 합리적으로 설명할 수 있는 APNT에 의한 BNPP의 촉매 가수분해 반응에 대한 일련의 catalytic cycle을 제안하였다. 따라서 반응의 각 단계에서 2핵 닉켈(II) 착 화합물의 금속 이온들은 phosphoryl group의 전달 속도를 촉진하였고 물 분자는 친핵체와 양성자 전달체로 작용하였다.

금속산화물이 담지된 γ - Al2O3 촉매상에서 가수분해에 의한 SF6의 촉매분해 (Catalytic Decomposition of SF6 by Hydrolysis over γ - Al2O3 Supported Metal Oxide Catalysts)

  • 박현규;박노국;이태진;권원태;장원철
    • 청정기술
    • /
    • 제18권1호
    • /
    • pp.83-88
    • /
    • 2012
  • 본 연구에서는 $SF_6$ 가수분해를 위하여 사용되는 ${\gamma}-Al_2O_3$의 안정성을 개선하기 위하여 조촉매를 조사하였다. $SF_6$의 가수분해과정에서 ${\gamma}-Al_2O_3$의 결정상은 ${\alpha}$상으로 전환된다. 여러 가지 금속산화물이 조촉매로 적용되었으며, 1, 5, 10 wt%의 Ga, Mg, Zn가 함침법에 의해서 ${\gamma}-Al_2O_3$의 표면에 담지 되었다. 특히, 산화아연이 담지된 촉매가 높은 활성을 가지고 이들의 결정상 변화가 없음을 촉매활성실험과 XRD분석으로 확인되었다. 이들 결과로부터 $SF_6$의 촉매분해반응에서 ZnO를 촉매의 표면에 담지하여 ${\gamma}-Al_2O_3$의 촉매적 안정성이 향상됨을 알 수 있었다.

${\gamma}-Al_2O_3$ 촉매상에서 가수분해와 산화반응에 의한 $SF_6$ 촉매분해 특성 (Catalytic Decomposition of $SF_6$ by Hydrolysis and Oxidation over ${\gamma}-Al_2O_3$)

  • 이선화;박노국;윤석훈;장원철;이태진
    • 청정기술
    • /
    • 제15권4호
    • /
    • pp.273-279
    • /
    • 2009
  • 온실효과를 발생시킬 수 있는 $SF_6$는 고체 산 촉매상에서 물과 산소에 의해 가수분해 및 산화반응에서 황 및 불소화합물로 분해될 수 있다. 본 연구에서는 $SF_6$ 제거를 위한 고체 산 촉매로 ${\gamma}-Al_2O_3$가 사용되었으며, 반응온도와 공간속도에 따른 촉매활성이 조사되었다. 가수분해에 의한 촉매환성은 $20,000\;ml/g_{-cat}{\cdot}h$의 공간속도와 973 K이상의 반응온도 조건에서 $SF_6$ 전화율이 거의 100% 달하는 최대 값에 도달하였다. 공간속도가 $45,000\;ml/g_{-cat}{\cdot}h$이하에서 $SF_6$ 전화율은 최대값이 유지되었다. 한편, 동일한 반응조건에서 산화반응에 의한 $SF_6$ 전화율은 약 20%정도였다. ${\gamma}-Al_2O_3$는 가수분해과정 에서 ${\alpha}-Al_2O_3$, 산화반응과정에서 $AlF_3$로 각각 변화됨을 SEM과 XRD분석에 의해 확인되었다. 산화반응 후 $AlF_3$$20\;{\mu}m$이상 성장되었고, 이들의 촉매활성은 낮은 표면적 때문에 매우 낮아졌다. 그러므로 $SF_6$의 분해를 위한 촉매반응은 산화반응보다는 가수분해가 유리하다고 판단된다.